C# 自制OCR获取图片中的电子数字0.前言1.项目背景1.思路分析1.1 找对应电子数字字体1.2 数字字体分析1.2.1 将数字【8】截图1.2.2 根据数字【8】截图像素标识辨识点1.2.2.1 上下部分的中点 O~1~、O~2~1.2.2.2 笔画中点 A ~ G1.2.2.3 外围点2. 流程图3.初见代码4.初见代码运行效果4.1运行结果*4.2 黑白二值化、柔化后的效果图*4.3
转载 2024-09-13 09:45:33
241阅读
# 使用Java和OpenCV提取数字 ## 引言 数字图像处理是计算机视觉和机器学习领域的重要研究方向。在很多应用场景中,我们需要从图像中提取数字信息,例如自动识别车牌号码、读取条形码等。本文将介绍如何使用Java和OpenCV库来提取数字。 ## 准备工作 在开始之前,我们需要安装Java开发环境和OpenCV库。你可以从官方网站下载Java Development Kit(JDK)
原创 2023-09-27 12:10:34
77阅读
# 使用Java和OpenCV提取数字的探索 在计算机视觉领域,图像处理是一个重要且实用的功能。提取图像中的数字是许多应用程序的关键步骤,例如文档分析、车牌识别和银行支票处理。本文将介绍如何使用Java和OpenCV库进行数字提取,并提供代码示例以帮助理解。 ## OpenCV简介 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库
原创 2024-10-18 06:59:11
114阅读
环境:opencv3.3 + C++ +win10 64位利用KNN进行手写数字识别,在opencv的文件夹中提供了一个可以用来训练的照片,一共有5000个小样本每个数字对应的有500个图片 。对应的文件夹应该是 opencv/sources/samples/data/digits.png其中每个小图片的样本是20*20 作为训练集和预测集的图片大小必须一致,所以用程序把每一个数字都切出来,所切的
转载 2024-07-04 06:12:40
162阅读
基于形态学处理+基本特征实现车牌区域提取1、形态学梯度2、Sobel边缘检测实际上,提取车牌还是那个思路:区域分离->轮廓检测->特征判断这里提供这样一个算法,来源于《OpenCV图像处理编程实例》步骤如下:边缘检测,检测垂直边缘,尽量减少横向的边缘连通车牌区域----->实现手段:形态学梯度、或者Sobel边缘检测的垂直方向,当然也可以用其他边缘检测方法对边缘实现二值化区域填充
转载 2024-02-17 16:05:47
57阅读
hsv原理
原创 2023-01-13 06:31:43
136阅读
这次出一个数字图像处理合集,用的是opencv3.4.6+vs2017版本。本合集逐渐深入,分为环境配置及入门、几何变换、图像增强、图像分割、形态学处理、图像特征和车流量统计部分。 本合集适合数字图像处理的初学者。1、配置图像处理编程环境步骤: 将opencv3.4.6解压到安装目录之后,打开VS2017,新建Windows桌面控制台程序,在属性管理器上点出Microsoft.Cpp.x64.us
昨年写的OpenCV处理表格的东西搞丢了,这几天拿到了一点图片数据,想起来需要继续做完但是又找不到代码了,翻遍了硬盘还是没找到代码,今天呆在电脑前,还是觉得应该有始有终,再做一个吧,不知道这次能坚持多久。2020年4月29日 00:00:49目的:使用OpenCV获取到表格主体轮廓,并用红线画出轮廓。4月29日的进度为了方便后续桌面开发,暂时用C#作为编程语言。//通过图片框拿到Mat Bitma
OpenCV提供了多种方法来提取图像中的区域。其中,最常用的方法是使用cv2.rectangle函数绘制矩形框,然后使用切片操作提取矩形框内的像素。import cv2 # 读取图片 img = cv2.imread('path/to/image') # 绘制矩形框 x, y, w, h = 100, 100, 200, 200 cv2.rectangle(img, (x, y), (x +
转载 2023-07-07 23:07:57
186阅读
识别表格轮廓要将图片转为EXCEL,首先要先将图片中的表格找出来,然后才能进一步识别其中的表格结构和文字。要找出表格的轮廓,人们常用的方法就是用OpenCV来实现。OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV是一个基于BSD许可 (开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由
图像直方图捕捉方式呈现一个场景使用可像素强度值。通过分析像素值得分布在一个图像,可以使用此信息来修改甚至可以提高一个图像。查找表定义了如何将像素值转换为新的值。表的第i项表示相应对应灰度的新值。newIntensity= lookup [ oldIntensity ]  ; OpenCV cv::LUT 对图像应用查找表以生成新图像。 可能说到这里,大家还是不太清楚怎么用,下面
作者 | 小白小伙伴们可能会觉得从图像中提取文本是一件很麻烦的事情,尤其是需要提取大量文本时。PyTesseract是一种光学字符识别(OCR),该库提了供文本图像。PyTesseract确实有一定的效果,用PyTesseract来检测短文本时,结果相当不错。但是,当我们用它来检测表格中的文本时,算法执行失败。图1.直接使用PyTesseract检测表中的文本图1描绘了文本检测结果,绿色框包围了检
转载 2024-02-19 13:49:12
138阅读
OpenCV基于颜色信息的车牌提取车牌提取的方法主要有:基于纹理特征分析法、基于数学形态学分析法、基于边缘检测的定位分析法、基于小波分析的定位分析法、基于彩色信息的定位分析法,本文采用的方法是基于颜色信息的定位分析法。 本文主要参考了以下这一篇博客,该博客是用C++编写的算法,我参考其方法用Python实现了一遍。参考的博客(C++编写的算法) 在代码中,我详细地注释了每一个步骤流程以及一些注意事
问题:如果文字大小存在比较大的差异时,怎么办? 答:这里给出另外一种策略,不是使用投影直方图,而是使用膨胀以及寻找连通区域。进行分割。 1)对图像二值化 2)对二值化之后的图像进行膨胀操作(dilate) 3)在2)得到的结果上寻找联通区域的边界(findContours)。 4)利用3)得到的结果画出方框。 本文是对这里的文章的另一种实现。使用C++。首先,读取图片Mat img =
转载 2024-03-23 12:38:19
447阅读
目录一、Opencv中常用的图像的读取方法二、形态学操作中核的生成getStructuringElement()函数三、Opencv中图像的三种二值化:threshold、adaptiveThreshold、Otsu 二值化四、图像模糊均值滤波Blur()函数 一、Opencv中常用的图像的读取方法1、直接根据图片路径进行读入String img_path = "C:/Users/mak
在图像处理的过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。例如,在视频监控中,观测到的是固定背景下的视频内容,而我们对背景本身并无兴趣,感兴趣的是背景中出现的车辆、行人或者其他对象。我们希望将这些对象从视频中提取出来,而忽略那些没有对象进入背景的视频内容。 OpenCV学习笔记(十二)1. 用分水岭算法实现图像分割与提取1.1 算法原理1.2 相关函数介绍1.2.1 形态学函数回
一、目标:将图像中我们需要的部分提取出,进行扫描,提取出其中的文字。二、思路:首先我们要定位我们在图像中需要的部分,将其轮廓提取出。 - 1将图像变换大小 - 2灰度化,高斯滤波,边缘检测 - 3轮廓提取 - 4筛选第三步中的轮廓,选择其中较大的 - 5绘制轮廓的近似,返回其中有四个点的轮廓image = cv2.imread(args["image"]) ratio = image.shape[
Canny算子是John.F.Canny于20世纪80年代提出的一种多级边缘检测算法。该算子最初的提出是为了能够得到一个最优的边缘检测,即:检测到的边缘要尽可能跟实际的边缘接近,并尽可能的多,同时,要尽量降低噪声对边缘检测的干扰。是一个很好的边缘检测器,很常用也很实用的图像处理方法。总共可以分为五步:高斯模糊GaussianBlur。将输入的彩色图像进行高斯模糊来去掉噪声灰度转换cvtColor。
一、边缘提取常用算子1、sobel算子边缘检测//Sobel梯度算子 void imageSobel(){ const char* name = "lena.tif"; IplImage* image = cvLoadImage(name, CV_LOAD_IMAGE_GRAYSCALE); if (image == NULL){ printf("image load failed.\n
OpenCV中给出了很多种提取对象特征的方法。 从简单的图像色块>图像阈值分割>轮廓查找>特征点检测>直方图检测等等有很多。这些简单的方法看似没有什么实际的场景可以直接拿来使用,但是就学习的时候拿来学习学习是非常恰当的。 下面就按照颜色阈值的方式来查找图像中的蓝色物体,提取出对象的掩膜并进行覆盖。色域转换通常情况下,摄像机直接采集到的图像是RGB色域的(在Opencv中三通
  • 1
  • 2
  • 3
  • 4
  • 5