光通过透镜折射后,会汇聚到一个焦点。对于不同波长的光,其折射率不同。对于相同的介质,波长越短,折射率越大。对于自然光来说,它包含了不同波长的光,因此各种成分的光的折射率是不同的,这些光经过透镜后,就不会汇聚在一个公共的点上了。发生这种情况时,沿着图像的非常亮和非常暗的边界,会出现彩色条纹,影响图像质量。
今天来一个缺陷检测的实例,如下是原图,第二个和第三个黑色部件有缺陷    思路:      ①提取OK部件轮廓做model     ②遍历部件轮廓,做差分,形态学处理     ③结果判断绘制    上代码(含注释):import cv2 import numpy as
 摘要本文使用opencv实现Halcon中的一个瓶口缺陷检测实例(C++实现),Halcon中对应的例子为inspect_bottle_mouth.hdev,用于检测酒瓶瓶口是否出现破损等缺陷情形。 Halcon实例主要步骤包含五步,分别是:使用阈值处理和形态学粗定位品口位置;XLD轮廓拟合最近似的圆形区域作为瓶口的轮廓;极坐标变换,转换到水平或垂直方向进行处理;均值滤波图与
目录前言一、频域变换1.傅里叶变换2.代码实现二、频域中图像处理1.理解数字图片的频谱2.频域图像处理步骤3.使用低通滤波器实现图像平滑4.使用高通滤波器实现图像锐化三、总结前言数字图像处理的方法有两大类:一种是空间域处理法,另一种是频域处理法。把图像信号从空间域变化到频域,可以从另外一个角度来分析图像信号的特性。一、频域变换1.傅里叶变换说到频域变化,就不得不提到傅里叶变化了,傅里叶变化是将时域
施努卡(SCHNOKA)成立于2010年,先后在上海,苏州及武汉建立了分公司。国家高新技术企业,致力于打造面向智能产线与智慧工厂最强控制大脑的高科技公司。公司围绕感知&识别核心技术构建智能装备,基于机器人视觉算法与单机器人工作站、多机器人群体共融、行业定制化应用。打造产品体系,面向智能生产线、智慧物流等场景实现软件定义智能。SCHNOKA (施努卡)在3D机器视觉算法、机器人柔性控制、手眼
最近做了一个钢板焊接点寻找项目,记录一下,哈哈分为3张图,分成3个博客讲。分别寻找焊接点,因为没有视频,只能从图片中提取。还有一个问题要求助在第四个博客,我想出一个方法,看看大家有没有什么更好的办法,相互学习。第一张图,方法是调滤波迭代值,加houghlinesP(轮廓)。系统win10,64位,IDE:VS2015。代码如下://调滤波迭代值,加houghlinesP(轮廓) #include
   在很多情况下,比如在噪声是散粒噪声而不是高斯噪声时(图像偶尔会出现很大的值的时候),在这种情况下,用高斯滤波器对图像进行模糊的话,噪声是不会被去除的,它们只是转换为更为柔和但仍然可见的散粒。而用非线性滤波会更好些。 1、中值滤波(Median filter)——medianBlur函数   该方法在去除脉冲噪声、斑点噪声(speckle noise)、椒盐噪声(
表面瑕疵检测常见的检测主要有物体表面划痕,污点,缺料、平面度、破损、边框整齐度、物体表面亮度,皱褶、斑点、孔洞等 表面瑕疵检测设备凝聚了机器视觉领域的多项先进技术成果,并融入了多项创新的检测理念,既可以和现有生产线无缝对接检测,也可以离线进行检测,在对材料表面的瑕疵以及半透明材料内部瑕疵进行快速检测的同时能够直观的给予生产反馈,可以广泛应用于塑化工业、造纸及纤维工业、电子工业、金属工
目录1 机器视觉2 缺陷检测3 工业上常见缺陷检测方法 1 机器视觉机器视觉是使用各种工业相机,结合传感器跟电气信号实现替代传统人工,完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工业品的缺陷检测极大的依赖人工完成,特别是传统的3C制造环节,产品缺陷检测依赖于人眼睛来发现与检测,不仅费时费力还面临人员成本与工作时间等因素的制约。使用机器视觉来实现产品缺陷检测,可以节约大量时间跟人
转载 2024-06-18 10:25:19
190阅读
删除线格式 色差公式发展的三个重要的阶段:1976年以前(CIELAB和CIELUV的采用)、1976年到2001年(CIEDE2000色差公式的推荐)、2001年以后。 国际照明委员会1998年成立了技术委员会(TC)1-47,主要任务是基于色相和明度的工业色差修正。 经过技术委员会成员的紧密协作,在2001年被推荐了名为CIEDE2000的色差公式。 它包含了5个对CIELAB的校正:明度权重
今天要做一个实验,需要用到opencv,所以打算写一些代码,结果按照网上的配置都有一些问题。所以把自己正确配置的经验给出来。首先作者使用的是opencv-3.4.3-vc14_vc15.exe这个文件,文件的下载地址在https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.3/点击上面的文件就可以开始下载了,下载后,双
在Jupyter Notebook上使用Python+opencv实现如下图像缺陷检测。关于opencv库的安装可以参考:Python下opencv库的安装过程与一些问题汇总。 1.实现代码import cv2 import numpy from PIL import Image, ImageDraw, ImageFont #用于给图片添加中文字符 def ImgText_CN(img
转载 2023-05-23 19:45:58
681阅读
本文参考并摘引:李少波, 杨静, 王铮, 朱书德, 杨观赐. 缺陷检测技术的发展与应用研究综述. 自动化学报, 2020, 46(11): 2319−2336. doi:  10.16383/j.aas.c180538   产品缺陷检测技术是指对检测样本的 表面斑点、凹坑、划痕、色差、缺损和内部结构等缺陷进行检测, 获 得检测
缺陷检测是每家生产企业都必不可少的一个环节,随着人们对产品的美观度、舒适度、使用性能等方面要求的不断提高,缺陷视觉检测的精准度、速度更是影响着成品的质量,并成为越来越多企业采用的有效手段。那么什么是视觉检测系统?它又是如何工作的呢?什么是视觉检测?机器视觉技术是一种无接触、无损伤的自动检测技术,是实现设备自动化、智能化和精密控制的有效手段,具有安全可靠、光谱响应范围宽、可在恶劣环境下长时间工作和生
该数据集的缺陷类别共为三类,分别包含:擦伤缺陷(cashang),凹槽缺陷(aocao),划痕缺陷(huahen)。该数据集共5824张JPG图片,标签文件为xml格式,三类缺陷在标签文件中分别命名为:cashang,aocao,huahen。为了证明真实性,小伙伴如果有意buy,可以在知网查看《改进YOLOX网络的轴承缺陷小目标检测方法》本人的小论文。可能有小伙伴还存在顾虑,都已经用过的数据集是
# 使用Python和OpenCV进行缺陷检测 在现代工业生产中,缺陷检测是确保产品质量的重要环节。借助计算机视觉技术,可以实现高效且精确的缺陷检测。本文将介绍如何在Python中使用OpenCV库进行简单的缺陷检测,通过示例代码和流程图来帮助您更好地理解这一过程。 ## OpenCV简介 OpenCV(Open Source Computer Vision Library)是一个开源计算机
原创 2024-09-22 05:16:55
917阅读
缺陷检测项目 | 使用OpenCV实现纺织品表面缺陷检测
目录前言课题背景和意义实现技术思路一、回转体零件的图像预处理二、图像分割实现效果图样例最后前言     ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长
摘要本文使用opencv实现Halcon中的一个瓶口缺陷检测实例(C++实现),Halcon中对应的例子为inspect_bottle_mouth.hdev,用于检测酒瓶瓶口是否出现破损等缺陷情形。 Halcon实例主要步骤包含五步,分别是:使用阈值处理和形态学粗定位品口位置;XLD轮廓拟合最近似的圆形区域作为瓶口的轮廓;极坐标变换,转换到水平或垂直方向进行处理;均值滤波图与原图做差分,
转载 2024-03-11 12:10:48
370阅读
截至到本次教程,我们已经基本掌握了OpenCV常用的一些功能,实际上已经可以处理很多问题了,故从本教程开始,示例代码将编写为一个固定函数,以便调用,另外将不再给出完整代码,比如导入库将不再另行贴出,一些基本的代码也不再贴出,只贴出核心部分,我会将核心部分整理为一个方便调用的函数。我们在前面讨论了轮廓的特征以及属性,今天我们将综合之前学的内容讨论轮廓的高级功能。凸缺陷对象上的任何凹陷都被称为凸缺陷
  • 1
  • 2
  • 3
  • 4
  • 5