目标检测是近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性算法,对后续的人脸识别、步态识别、人群计数、实例分割等任务起着至关重要的作用。在深度学习浪潮到来之前,目标检测精度的进步十分缓慢,靠传统依靠手工特征的方法来提高精度已是相当困难的事,而在卷积神经网络(CNN)出现之后,其所展现的强大性能,吸引着学者们将
Opencv相机标定(一)摘 要:本文主要讲解如何利用计算机视觉开源库Opencv解决单目摄像头的标定和三维姿态的求解。相机的标定操作系统: Ubuntu16.04 LTSOpenCV版本: 3.4.0摄像头: 640×480像素 单目摄像头一、Opencv自带例程标定1.找到例程:OpenCV里面提供了标定的例程,可以直接用其对摄像头进行标定。进入opencv目录并找到samples/cpp/t
引言机器视觉中经常将相机拍摄到的物体与实际存在的坐标系联系,通过图像进行视觉测量定位,为了使相机获得世界坐标系三维信息,需要对相机进行标定。1 相机标定原理 相机将三维世界中的坐标点(单位:米)映射到二维图像平面(单位:像素)的过程能够用一个几何模型来描述,其中最简单的称为针孔相机模型 (pinhole camera model),其框架如下图所示: 其中,涉及到相机标定涉及到了
我使用OpenCV2.4.4的windows版本+Qt4.8.3+VS2010的编译器做了一个手势识别的小程序。本程序主要使到了Opencv的特征训练库和最基本的图像处理的知识,包括肤色检测等等。废话不多,先看一下基本的界面设计,以及主要功能:相信对于Qt有一些了解的人都不会对这个界面的设计感到陌生吧!(该死,该死!)我们向下走:紧接着是Qt导入OPenCV2.4.4的库文件:(先看一下Qt的工程
转载 2023-12-27 09:14:10
105阅读
简介   本篇是使用opencv函数:cvFindChessboardCorners、cvFindCornerSubPix、cvDrawChessboardCorners,来找到、优化并显示出来标定棋盘 图片的角点。   关于这三个函数得讲解看,可以参考:http://www.360doc.cn/article/10724725_367761079.html 角点检测具体代码   具体代码
1 处理图像的颜色1.1 提取指定的颜色区域cv::floodFill() 函数1.2 分割图像cv::grabCut()函数,用于从静态图像中提取前景物体。1.3 转换颜色的表示方法HSV:色调、饱和度、亮度的 色彩空间。色调(hue):表示主色;饱和度(saturation):表示颜色的鲜艳程度,柔和的颜色饱和度较低。亮度(brightness):表示某种颜色的光亮程度。在图像处理中使用较多的
今天我们聊一聊人脸检测和关键点定位问题。很多朋友可能会对这一块感兴趣,于是纷纷跑去研究SSD、YOLO、Faster RCNN等方法,最后花费了很久的时间,才搞出一个模型。又是数据,又是算法,搞得头大。实际上,如果你是想搞算法,这样做是很值得推崇的。如果只是想做一些实验性的demo,感受一下人脸相关的一些业务,或者只是需要人脸检测这个步骤,但是对准确性要求没那么搞。那这里,我们推荐dlib库,直接
上传技术博客真的挺费时间的,不过为了广大的同胞们能节省更多的时间,自己通过学习书籍《学习opencv》和书籍《机器视觉算法与应用》中有关摄像机标定的内容,现在就在这里总结了一下,方便大家参考。不足之处,大家体谅。毕竟是花费了大半天时间总结的。希望大家多多转发,请标出文章出处。谢谢摄像机标定其实就是确定摄像机内参和外参的过程。为了进行摄像机标定,必须①已知世界坐标系中足够多的三维空间点坐标,②找到这
相机标定步骤输入一系列三维点和它们对应的二维图像点。1、在黑白相间的棋盘格上,二维图像点很容易通过角点检测找到。2、而对于真实世界中的三维点呢?由于我们采集中,是将相机放在一个地方,而将棋盘格定标板进行移动变换不同的位置,然后对其进行拍摄。所以我们需要知道(X,Y,Z)的值。但是简单来说,我们定义棋盘格所在平面为XY平面,即Z=0。对于定标板来说,我们可以知道棋盘格的方块尺寸,例如30mm,这样我
转载 2024-04-16 13:37:29
317阅读
本文着重阐述以下问题: halcon是否只能使用halcon专用的标定板?halcon标定板如何生成?halcon标定板如何摆放,拍照数量有无限制?halcon是否只能使用halcon专用的标定板? halcon提供了简便、精准的标定算子并且提供了标定助手,这无疑大大方便了广大开发者。在halcon中有两种方式可以进行标定:如halcon自带例程中出现的,用halcon定义的标
首先看看棋盘,就是那种国际象棋的棋盘,就是我们要使用的标定板,标定板也分了几种。· 普通棋盘· 圆点· 非对称圆点后面会写棋盘和圆点的区别,这里先讲棋盘。前面讲相机标定是将三维世界的场景映射为二维的图片,映射过程有很多步,也就是如何从世界坐标系转换到像素坐标系的过程。从世界坐标系到相机坐标系:R是旋转矩阵,t是平移矩阵,从世界坐标系到相机坐标系可以通过旋转平移得到,这个变化过程会得到一个变换矩阵,
程序流程准备好一系列用来相机标定的图片;对每张图片提取角点信息;由于角点信息不够精确,进一步提取亚像素角点信息;在图片中画出提取出的角点;相机标定;对标定结果评价,计算误差;使用标定结果对原图片进行矫正;opencv实现代码:#include <iostream> #include <vector> #include <fstream> #include &lt
转载 2024-01-08 14:00:27
286阅读
1、基于图片的人脸、人眼检测 原理: OpenCV利用样本的Haar特征进行分类器训练,得到级联boosted分类器(CascadeClassification),可以检测图片中的眼睛(还支持的有人脸、嘴、鼻子、身体)。2. 我用时vs2015+opencv310(看了一下opencv3.4.1,人脸检测分类器是没有更新的)。//#include "stdafx.h" #include "open
转载 2024-03-14 06:59:38
84阅读
今天的低价单孔摄像机(照相机)会给图像带来很多畸变。畸变主要有两 种:径向畸变和切想畸变。如下图所示,用红色直线将棋盘的两个边标注出来, 但是你会发现棋盘的边界并不和红线重合。所有我们认为应该是直线的也都凸 出来了。在 3D 相关应用中,必须要先校正这些畸变。为了找到这些纠正参数,我们必 须要提供一些包含明显图案模式的样本图片(比如说棋盘)。我们可以在上面找 到一些特殊点(如棋盘的四个角点)。我们
<span style="font-family:SimHei;font-size:18px;">0 前言 最近一直在看关于目标跟踪方面的算法实现,也是时候整理下思路看看怎么实现了。 这次我将带领大家看看基于 OpenCV的目标跟踪算法及其基本实现。由于目标跟踪方法众多,我将分为几次讲解逐个讲解。当然只是起个索引的 效果,要好的跟踪实现有待自己去深化。 概述
1.基本介绍手眼标定两种形式 眼在手外 eye to hand 眼在手上 eye in hand2.公式推导 眼在手上类似3.方程AX=XB求解4.opencv完成手眼标定 眼在手上 1.Rend2base机械臂末端到基点的变换矩阵,可从示教器或者在ROS直接订阅相关tf 2.Rboard2cam 标定板到相机,pnp求出眼在手外 1.Rbase2end,跟眼在手上相反 2.跟眼在手上相同。5.初
    OpenCV库自带了一个可以用于相机标定的功能,不仅可以标定最常见的棋盘格标定板,还可以用于Halcon常用的圆点阵列标定板。    以下对如何使用该自带例程进行相机标定进行一个简要的介绍,也算是对之前工作的一个总结。            
Camera Calibration1.OpenCV Camera CalibrationOpenCV提供具体的标定策略和说明文档,可以直接使用,说明文档的位置"D:\opencv\sources\doc\tutorials\calib3d\camera_calibration";例程的位置“D:\opencv\sources\samples\cpp\camera_calibration.cpp”
转载 2024-05-24 06:10:44
189阅读
注意:棋盘图不能动,此时从左右摄像头各采集一副图片,Matlab 需要标定多张图片,不能单只标定一张,可能会在标定或保存结果的过程中出错。Matlab 标定工具箱保存的位置也并不是必须在安装文件夹下,可用户定义1 首先下载matlab 标定工具箱 http://www.vision.caltech.edu/bouguetj/calib_doc/download/index.html或者链
手势识别系列文章目录手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。1.  opencv实现手部追踪(定位手部关键点)2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)3.手势识别-手势音量控制(opencv)4.opencv实战项目 手势识别-手势控制鼠标未完待续本专栏记录作者的学习之旅会一直更新下去,欢迎订阅一起
  • 1
  • 2
  • 3
  • 4
  • 5