图像处理第一步——Python+OpenCV环境搭建摘要笔者在完成一项《数字图像处理》课程设计的时候接触到了这个令不少数字图像处理小白十分头疼的问题,那就是一个好用的Python+Opencv环境搭建,版本的差别造成的错误,还有各种奇葩的问题,笔者也是搭建了好几天,总算是搭建好了,在这里必须要记录一下。 说明:本文中采用的环境为Python 3.7,OpenCV 4.5.2,TensorFlow2
上个随笔讲了在windows 上安装 caffe,并且 跑mnist 这个例程的过程,说真的,就像奶妈一样,每一步都得给奶才干活。最近配置了一台台式机,可以作为以后自己配置学习机的参考。配置如下:补图。 电脑概览电脑型号 兼容机操作系统 Ubuntu 16.04 LTSCPU AMD Ryzen 7 1700X Eight-Core Processor(3400 MHz)主板 华硕 RO
【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型C++版本OpenCV_GPUWindows平台编译安装Open
【计算机视觉】关于OpenCVGPU配置编译的相关事项标签(空格分隔): 【计算机视觉】前一段发现了OpenCV中关于GPU以及opencl的相关知识,打算升级一下对OpenCV的使用,但是发现从OpenCV官网上下载的都是没有WITH_CUDA这一选项的。于是必须进行OpenCV带CUDA的重编译!下面就记录这一阶段出现的一系列问题。关于OpenCV版本的问题 起初直接尝试使用一直用的Open
转载 2024-05-14 07:18:03
141阅读
1、  查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce 8400 GS;2、  从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安装;3、  从https://developer.nvidia.com/cuda-toolkit根据本机类型下载相应最新版的CU
转载 2024-03-08 09:11:06
181阅读
目录一、一些概念及说明二、设备信息函数一、一些概念及说明1、主机端(Host端)、设备端(Device端、GPU端)在CUDA中,有主机端和设备端这两个概念,主机端是指CPU+内存,设备端是指GPU+显存。主机端的代码在CPU上执行,访问主机内存;设备端代码在GPU上执行,访问显存。在使用GPU计算时,需要在主机内存好显存之间来回拷贝数据;当然,一些新技术可以不用拷贝数据,请参考后面的章节或者CU
转载 2024-04-05 22:29:30
530阅读
学习目标理解算法的原理,能够使用进行关键点的检测SIFT/SURF算法1.1 SIFT原理前面两节我们介绍了和角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。 所以,下面我们来介绍一种计算机视觉的算法,尺度不变特征转换即。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其
转载 2024-08-23 17:58:30
268阅读
背景在文章编译安装LitmusRT遇到的问题中,我们已经编译安装了实时操作系统LitmusRT,并且能够正常启动它。现在,我们得编译安装一下GPU加速的第三方库OpenCL或OpenACC。这里再次注意不要用虚拟机安装英伟达驱动,因为虚拟机的显卡是虚拟出来的,加载不了英伟达的ko文件。所以我使用的是实验室的ubuntu16.04 64位台式机,此台式机已经装好了英伟达驱动、cuda10.2和10.
转载 2024-05-07 13:37:56
430阅读
使用GPU加速要看在什么平台上使用,目前VS中是直接可以将函数指定在GPU上运行,但是要注意使用的场合,并不是什么情况下使用GPU都可以加速,GPU是因为使用了显存,而显存是比内存大很多的,所以可以同时对很多数据进行处理,所以才能提高处理速度,但其实它的计算频率并不比内存上高,所以可以看出GPU能够加速的原理是:大容量并行计算(可能形容得不到位…..)。但是如果只对一个数据进行反复计算,这时候GP
转载 2023-10-17 20:06:00
420阅读
In-Datacenter Performance Analysis of a Tensor Processing Unit TPU系列芯片已经广泛应用于Google的各种服务中,加速其神经网络运算,例如2015年AlphaGo与李世石进行围棋人机对战中所用的就是TPU芯片。TPU1面向的是数据中心的推理应用,被设计为PCIe上的协处理器,可以像GPU一样插入到SATA硬盘插槽里使用,实现了12
OpenCV4 + CUDA 从配置到代码.....引子一直有人在研习社问我,怎么去做OpenCV + CUDA的加速支持。其实网上用搜索引擎就可以找到一堆文章,但是其实你会发现,按照他们的做法基本都不会成功,原因是因为文章中使用的OpenCV版本太老旧、英伟达GPU的CUDA库也太久远。其实这个都不是主要原因,真实原因是OpenCV4跟之前的版本,编译CUDA的方法不一样了。所以感觉有
转载 2024-02-21 14:11:51
111阅读
网上教程挺多的的,我也是参考网上教程编译成功的,现在把我编译的过程发出来。 目的:使用opencv中的cuda加速函数。例如:frame1_gray = cv.cuda_GpuMat(image1) frame2_gray = cv.cuda_GpuMat(image2) opticalFlowGPU = cv.cuda_FarnebackOpticalFlow.create(3,0.5,Fals
转载 2024-02-10 07:39:18
329阅读
重磅干货,第一时间送达import cv2 as cv gpu_frame = cv.cuda_GpuMat() screenshot = cv.imread('media/drip.png') gpu_frame.upload(screenshot) gpu_frame.download() 概述在单张图像上使用在多张图像上使用对多张图像使用Dask进行并行延时处理在单张图像上使用我们
OpenCV中配置CUDA,实现GPU加速按语:首先感谢博主的方法,在这个基础上编译之后发现了很多问题,所以进行了改正,有了以下方法:1、 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce  GT630;2、 从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安
转载 2024-01-09 15:42:54
186阅读
如果您使用OpenCV已有一段时间,那么您应该已经注意到,在大多数情况下,OpenCV都使用CPU,这并不总能保证您所需的性能。为了解决这个问题,OpenCV在2010年增加了一个新模块,该模块使用CUDA提供GPU加速。您可以在下面找到一个展示GPU模块优势的基准测试:简单列举下本文要交代的几个事情:概述已经支持CUDA的OpenCV模块。看一下cv :: gpu :: GpuMat(cv2.c
写在前面:一直想尝试一下opencv GPU模块,无奈以前电脑配置的ATI的显卡,最近换了一台联想的D20工作站,虽然性能不比最近发布的D30,但还算是有了可以尝试cuda的平台。没想到刚开始还是遇到不少问题。首先遇到的就是重新编译支持GPU模块的opencv版本,由于这里写的是回忆,可能有些不太详尽,还望看到这篇博文的朋友能够补充。一、安装篇:安装部分分为cuda安装和opencv编译。1.1、
转载 2024-02-27 21:32:26
50阅读
多线程多条路走、提高效率。线程是独立执行的路径基本概念进程:主要指运行在内存中的可执行文件,多进程可以让操作系统同时执行多个任务。进程是重量级的,会消耗cpu、内存等系统资源,进程数量比较局限。 线程:线程是进程内部的程序流,每个进程内部都支持多线程,线程是轻量的,新建线程会共享所在进程的系统资源。 多线程是采用时间片轮转法来保证多个线程的并发执行,所谓并发就是指宏观并行微观串行的机制并行:多个C
很早就想写博客来记录自己的成长之路了,拖着拖着转眼就10月份了,该死的体测也快到了,难受的一,话不多说切入正题。今年19年,电赛国赛年,暑假在学校准备了一个多月吧,搞四轴飞行器,我负责视觉方面,然后学习了openmv,不幸的是,封箱前几个小时,临阵加电路,没想到电压问题把飞机搞炸了,最终遗憾弃赛,不过还是去了现场,说多了一把泪,往事如烟。暑假在学校准备电赛的时候同时准备了另一个比赛,写了代码,那就
项目说明:因为我要用opencv里的GPU模块,加速Sift图像拼接算法。所以开始了“参无人寰”的opencv重新编译。一下内容折腾我将近20天,特此记录,献给同样是菜鸟的我们,以防走弯路。首先说明:(1)因为要用cuda,所以电脑上必须要有,英伟达的显卡,AMD的不行;                  &
转载 2024-05-22 12:16:36
381阅读
OpenCV 为啥勾搭上 OpenGL? Vinjn张静 · 2 年前如果读者留意 OpenCV 2.3 之后的版本,那么会发现 cv::ogl namespace,ogl 自然是 OpenGL了。一个三维计算机图形库为何出现在计算机视觉中,传统的 CV 开发者是否需要学习它,这些问题待我一一来回答。问题一:为何引入 OpenGL?在 2.3 之前 OpenCV 的渲染部分都是
转载 2024-03-04 16:20:34
150阅读
  • 1
  • 2
  • 3
  • 4
  • 5