本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别)。人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影。甚至很多高校学生的毕业设计都会涉及到人脸检测。当然人脸检测的巨大实用价值也让很多公司纷纷关注,很多公司都拥有这方面的专利或是开发商业产品出售。    在OpenCV中,人脸检测也是其热门应用之一。在OpenCV的特
目录1 find_package 使用简介 1.1 Module 模式 1.2 Config 模式2 问题分析3 解决方案 3.1 方案(一) 3.2 方案(二) 3.2.1 方式(1) 3.2.2 方式(2) 3.2.3 方式(3) 3.2.4 方式(4) 3.3 总结4 参考资料正文我在安装OpenCV 库之后,本来打算测试一下 OpenCV 库是否成功安装。结果出现了
一、安装Visual StudioOpenCV是一种开源的计算机视觉开发库。既然是开发库,那么必须依托某种语言程序来加载。以C++为例,在安装OpenCV之前,必须安装C++的程序开发环境(IDE),在此我们选择Visual Studio Community——VS社区版,这个版本是免费的。中文版下载安装地址: https://visualstudio.microsoft.com/zh-hans/
LZ最近换了台新台式电脑,开始下载新VS软件,话说软件平台越新越好用,一看网上已经有VS2015版本,果断就去官网下载。1.安装VS操作官方网的链接如下:https://www.visualstudio.com/downloads/download-visual-studio-vshttps://beta.visualstudio.com/free-developer-offers/https:/
1、概述  监控,在检查系统问题或优化系统性能工作上是一个不可缺少的部分。通过操作系统监控工具监视操作系统资源的使用情况,间接地反映了各服务器程序的运行情况。根据运行结果分析可以帮助我们快速定位系统问题范围或者性能瓶颈点。  nmon是一种在AIX与各种Linux操作系统上广泛使用的监控与分析工具,相对于其它一些系统资源监控工具来说,nmon所记录的信息是比较全面的,它能在系统运行过程中实时地捕捉
一、前言物体检测分类是一种机器学习任务,旨在识别图像或视频中的物体,并将其分为不同的类别。与传统的物体分类任务不同,物体检测分类不仅可以确定图像中物体的类别,还可以确定它们在图像中的位置和边界框。物体检测分类通常涉及以下步骤:数据收集和标注:收集包含不同类别物体的图像或视频数据,并进行标注,标注包括每个物体的类别和边界框信息。特征提取:使用图像处理和计算机视觉技术,从收集的图像中提取有用的特征。这
Haar级联由于灯光、视角、视距、摄像头抖动以及数字噪声的变化,一个图像的细节可能会变得不稳定。但是人们在分类时却不会受这些物理细节方面差异的影响。因此,提取出图像的细节对产生稳定分类结果和跟踪结果很有用。即:从图像中提取特征。虽然任意像素都可能影响多个特征,但特征应该比像素数少得多。由此两个图像的相似程度可以通过它们对应特征的欧氏距离来度量。类Haar特征是一种用于实现实时人脸跟踪的特征。每个类
本文将向大家介绍如何使用OpenCV库进行坑洼检测。为什么要检测坑洼?坑洼是道路的结构性指标,事先发现坑洼地可以延长高速公路的使用寿命,防止事故的发生,同时降低死亡率。一种可行的解决方案是构建自动坑洞检测系统,该系统可通过云服务发送实时信息以提醒管理结构,来杜绝每天人工检查所产生的不必要花费。OpenCV是一个帮助研究人员处理图像问题的库,该库提供了大量处理图像的方法。OpenCV的使用将有助于坑
文章目录前言一、函数介绍1、HoughLinesP2、HoughCircles3、findContours4、 drawContours二、演示1、GUI2、代码实现总结 前言越来越多的开发人员选择基于开源的Qt框架与OpenCV来实现界面和算法,其原因不单单是无版权问题,更多是两个社区的发展蓬勃,可用来学习的资料与例程特别丰富。以下是关于利用Qt构建GUI并使用OpenCV中的HoughLin
转载 2024-08-21 14:01:04
201阅读
作者:youhaipeng在上一篇的博文中,我们已经利用工具将opencv的代码进行了加工,这一篇博文,我们将来测试opencv已经可以被Qt来成功调用。 1 整理文件夹,提炼有用的素材。 我们已经说过,之前的过程其实是编译库文件的过程,因此,只有得到的“产品”是有用的,别的文件可以删除,以节省硬盘空间。有用的文件夹包括以下3个:
物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。目录1、相关库2、读图+图片预处理3、寻找轮廓4、找到参照物的轮廓,并且进行图像矫正5、结束 完整代码:实时实现物体尺寸计算代码: 1、相关库opencv-python==4.2.0.34numpy==1.21.6
转载 2023-07-16 19:28:43
423阅读
1点赞
1、Opencv DNN1.1 opencv DNNOpenCV DNN githubDeep Neural Networks (dnn module)(opencv dnn 教程)TensorFlow Object Detection APIROS工程不使用ROS自带的OpenCVhttps://github.com/Smorodov/Multitarget-trackerhttps://git
转载 2024-05-22 22:22:48
80阅读
环境:Python3.8 和 OpenCV内容:Hough圆检测将直角坐标系中的一个圆映射为新坐标系中的一个点,对于原直角坐标系中的每一个圆,可以对应(a, b, r) 这样一个点,这个点即为新三维中的点。标准法实现步骤: 1.获取原图像的边缘检测图像;2.设置最小半径、最大半径和半径分辨率等超参数;3.根据转化后空间的圆心分辨率等信息,设置计数器N(a, b, r);4.对边缘检测图像的每个白色
转载 2023-12-02 21:01:28
344阅读
简介  OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。   OpenCV的官方网址为:https://opencv.org/, 其Gi
转载 2024-04-22 14:45:26
104阅读
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条、轮廓、块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用。一、Canny检测轮廓在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的丰富边缘和高阈值
转载 2024-02-23 11:41:48
248阅读
文章目录单张人脸关键点检测单张图像人脸检测摄像头实时关键点检测 单张人脸关键点检测定义可视化图像函数 导入三维人脸关键点检测模型 导入可视化函数和可视化样式 读取图像 将图像模型输入,获取预测结果 BGR转RGB 将RGB图像输入模型,获取预测结果 预测人人脸个数 可视化人脸关键点检测效果 绘制人来脸和重点区域轮廓线,返回annotated_image 绘制人脸轮廓、眼睫毛、眼眶、嘴唇 在三维坐
转载 2024-03-19 08:31:40
87阅读
直线检测直线检测可以通过OpenCV的HoughLines和HoughLinesP函数来完成,它们仅有的差别是:第一个函数使用标准的Hough变换,第二个函数使用概率Hough变换,即只通过分析点的子集并估计这些点都属于一条直线的概率,这在计算速度上更快。函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength
转载 2023-12-27 21:31:33
347阅读
先贴代码 1. void cvSkinSegment(IplImage* img, IplImage* mask){ 2. CvSize imageSize = cvSize(img->width, img->height); 3. IplImage *imgY = cvCreateImage(imageSize, IPL_DEPTH_8U,
目录一、基础理论1、作用:2、定义3、原理二、直线检测 1、基础理论 1、原理2、过程2、HoughLines函数(直线检测)3、HoughLinesP函数(线段检测)三、圆检测1、基础理论1、概念 2、原理2、HoughCircles函数C++ API: python API:总代码一、基础理论1、作用:提取直线和圆等几何形状。2、定义霍夫变换(Hough
一、概念运动侦测,英文翻译为“Motion detection technology”,一般也叫移动检测,常用于无人值守监控录像和自动报警。通过摄像头按照不同帧率采集得到的图像会被CPU按照一定算法进行计算和比较,当画面有变化时,如有人走过,镜头被移动,计算比较结果得出的数字会超过阈值并指示系统能自动作出相应的处理。—–百度百科差分算法差分检测根据当前图像与参考图像的差别分析来判断序列图像中是否有
  • 1
  • 2
  • 3
  • 4
  • 5