文章目录ROI区域颜色通道提取合并颜色通道 ROI区域在OpenCV(cv2)中,ROI(Region of Interest,感兴趣区域)是指图像中你特别关心的部分。通过指定ROI,你可以对图像的特定区域进行处理、分析或显示。在OpenCV中,ROI的选取通常是通过指定图像上的矩形区域来完成的。这个矩形区域由左上角和右下角的坐标来定义。一旦定义了ROI,你就可以对该区域进行各种操作,如裁剪、分
目录一、OpenCV-阀值操作1.1阀值操作函数threshold1.2threshold的操作类型1.3Otsu算法二、样例开发2.1 Makefile2.2 main.cpp2.3 运行效果三、OpenCV-自适应阀值操作        3.1 自适应阀值操作函数-adaptiveThreshold3.2 样例开发一、Ope
OpenCV数字图像处理之ROI区域的提取 利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。1、实现原理 先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用cv.bitwise()函数提取得到ROI区域。2、使用的函数简述 (1) cv.cvt
 一、cv2.getPerspectiveTransformcv2.getPerspectiveTransform(src, dst) → retvalsrc:源图像中待测矩形的四点坐标sdt:目标图像中矩形的四点坐标一、cv2.warpAffine放射变换函数,可实现旋转,平移,缩放;变换后的平行线依旧平cv2.warpAffine(src, M, dsize, dst=None, f
转载 2024-03-17 09:44:36
34阅读
使用rowRange和colRange函数或者vconcat和hconcat函数来实现图像图拼接操作1.rowRange和colRange函数这两个函数在Mat头文件中#include <opencv2/core/mat.hpp>rowRange():Mat cv::Mat::rowRange ( int startrow, int endrow
文章目录OpenCV-Python基本属性线性enum cv::LineTypesOpenCV-Python图像操作Python图像读取,图像的PIL.Image, numpy.darray, Tensor形式相互转换cv2.resize() 图片缩放cv2.flip() 图片翻转cv2.threshold()图像二值化cv2.findContours()提取mask的轮廓cv2.rectang
Github地址: https://www.dasuda.top/index.php/2020/05/10/deltacvzhicpusuanfayouhuainrange/www.dasuda.top OpenCV中的inRange()OpenCV中的inRange()函数常常用来对图像的各个通道进行阈值分割,但是当图像尺寸过大时,该步骤较为耗时,故我们使用SIMD指令集
【1】inRange()函数      OpenCV中的inRange()函数可实现二值化功能(这点类似threshold()函数),更关键的是可以同时针对多通道进行操作,使用起来非常方便!主要是将在两个阈值内的像素值设置为白色(255),而不在阈值区间内的像素值设置为黑色(0),该功能类似于之间所讲的双阈值化操作。函数原型(C++):&
转载 2024-03-27 10:00:51
774阅读
图像载入、显示、保存函数: 1         图像载入函数:imread()   Mat imread(const string& filename, int flags=1);     const string&类型的filename为载入图像的路径(绝对路径和相对路径)     flags是int类型的变量
将在两个阈值内的像素值设置为白色(255),而不在阈值区间内的像素值设置为黑色(0)#include<opencv2/opencv.hpp>#include<iostream>#include <vector>int main(int argc, char** argv) { cv::Mat M = (cv::Mat_<double>(3,
原创 2022-01-25 11:18:43
1047阅读
     接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷。       今天主要是基于opencv模块来
转载 2023-10-04 13:38:32
55阅读
常言道“温故而知新”,写此文章就是对自己目前学习内容的小小的总结与记录。本文力求用最简洁的语言,详细的代码将此部分内容讲解清楚,但由于博主同样是刚刚接触OpenCV,或许表达上有些瑕疵,还望读者能够指教探讨,大家共同进步。 博主机器配置为:VS2013+opencv2.4.13+Win-64bit。若本文能给读者带来一点点启示与帮助,我就很开心了。====================分割线==
atitit.颜色查找 根据范围  图像处理 inRange  使用opencvinRange 结果又问题,不能找到。调整多次,麻烦,只好使用java实现。 原理就是判断范围,如果是的设置为白色,否则黑色。 /atiplat_img/src/com/attilax/img/CoreImg.java public static BufferedImage inRan
原创 2021-09-16 17:26:49
84阅读
# 如何在Python中实现`inrange`功能 在Python编程中,可能会经常需要检查一个数字是否在特定的范围内。我们可以创建一个简单的函数来实现这个功能。这个函数的名称可以定为`inrange`,它将接收一个数字及一个范围(包括上下限),并返回该数字是否在这个范围内的布尔值。 本文将分步说明如何实现这一功能,并使用流程图帮助你更好地理解每一步。 ## 流程概述 下面是实现`inra
原创 7月前
60阅读
文章目录一、背景消除建模(BSM)与对象
原创 2021-09-09 09:46:49
83阅读
  在本教程中,我们将学习Computer Vision中使用的流行色彩空间,并将其用于基于颜色的分割。 1975年,匈牙利专利HU170062引入了一种难题,在43,252,003,274,489,856,000(43亿亿)种可能性中,只有一种正确的解决方案。到2009年1月,这项被称为“魔方”的发明席卷全球,销量超过3.5亿。 因此,有位同学又建立基于计
OpenCV中的图像处理 —— 图像阈值+图像平滑+形态转换 目录OpenCV中的图像处理 —— 图像阈值+图像平滑+形态转换1. 图像阈值1.1 简单阈值1.2 自适应阈值1.3 Otsu的二值化2. 图像平滑2.1 2D卷积(图像过滤)2.2 图像平滑(图像模糊)3. 形态转换3.1 侵蚀与膨胀3.2 开运算与闭运算3.3 顶帽与黑帽3.4 结构元素 1. 图像阈值关于图像阈值主要涉及到两个函
在本教程中,我们将了解计算机视觉中经常使用的色彩空间,并将其用于基于颜色的分割。我们还将用C ++和Python分享演示代码。 RGB色彩空间 RGB颜色空间具有以下属性 1. 它是一种加色空间,其中颜色通过红色,绿色和蓝色值的线性组合获得。 2. 三个通道通过照射到表面的光量相关联。 让我们将这两个图像分成R,G和B分量并观察它们以更深入地了解色彩空间。 图1:RGB颜色空间的不同通道:蓝(B
前言还记得这个图吗?前阵子有篇文章《【综合练习】C++OpenCV实战---获取数量》里面中我们利用学到了一些OpenCV的基本知识进行了数量的提取。当时算是完成了,可以看看文章中的实现思路里面用到了距离变换,连通区域计算,还是归一化等一些API,比较烦所,其中里面一个最关键的问题是通过图像二值化后进行形态学操作,需要反复不停的测试找到一个合适的点才能把最左侧的两个枣区分开,上一章中我们学习了In
使用OpenCV基于特定的色彩范围进行图像分割操作 一、遍历图像实现色彩掩码本节我们实现这样一个算法,我们指定某种颜色和一个阈值,根据输入图片生成一张掩码,标记符合的像素(和指定颜色的差异在阈值容忍内)。源代码如下,我们使用一个class完成这个目标,其指定了两种构建函数,并通过逐像素扫描的形式生成掩码(process成员函数)。另外,本class做了仿
转载 2024-06-12 05:39:04
176阅读
  • 1
  • 2
  • 3
  • 4
  • 5