lines_gauss原型lines_gauss(Image : Lines : Sigma, Low, High, LightDark, ExtractWidth, LineModel, CompleteJunctions : )功能检测线条以及其宽度。参数列表Image (input_object) :输入图像 Lines (output_object) :检测线条(XLD) Sigma (i
一、高斯平滑(模糊)def gaussian_blur(image):
# 设置ksize来确定模糊效果
img = cv.GaussianBlur(image, (5, 5), 0)
cv.imshow('img', img)
# 不通过ksize来设置高斯核大小,通过设置高斯分布公式中的sigma
img2 = cv.GaussianBlur(imag
转载
2023-08-02 23:29:53
37阅读
均值滤波和高斯滤波详细解读1:均值滤波在上一篇博文–方框滤波中,我们介绍了方框滤波的内核: 而我们今天的第一个主角——均值滤波,就是方框滤波的一种特殊情况均值滤波是一种最简单的滤波操作,输出图像的每一个像素值,是核窗口内输入图像对应像素的平均值,均值滤波算法的主要方法就是:用一片图像区域的各个像素值的均值来代替原图像的像素值,我们需要对图像中的目标像素给出一个模板(内核),这个模板包括了该目标像素
转载
2024-08-05 23:10:16
356阅读
要搞清楚高斯核的原理的话,把下面这篇博文认认真真看一遍就可以了,链接如下:下面是我认为值得注意和需要补充说明的几点:1 为什么高斯滤波能够让图像实现模糊化? 答:高斯滤波本质是低通滤通(有兴趣的同学可以查阅高斯滤波器的频率响应函数),即让信号(数据集)的低频部分通过,高频部分滤除。图像的细节其实主要体现在高频部分,所以经过高斯滤波,图像看起来就变模糊了。2 为什么很多文章中说生成高斯核时,我们通常
转载
2024-08-12 17:14:13
428阅读
一.高斯滤波原理1、一维高斯分布:2、二维高斯分布:3、高斯滤波一般使用的*二维零均值*的高斯分布函数,通过高斯分布函数求出模板系数,例如一个3*3的模板:以模板的中心位置为坐标原点进行取样,其中模板各个坐标位置如下图,x轴水平向右,y轴垂直向下,(x,y)表示4、将各个位置的坐标代入二维零均值高斯分布函数,计算出来的模板有两种形式: 整数模板和小数模板,可以使用二维数组来存放计算出的模板系数①小
转载
2023-12-18 22:32:37
130阅读
高斯窗常用于对图像进行模糊或低通滤噪,但是随着高斯半径的增加,时间消耗会逐级增加 如高斯半径为N时,计算每个输出采样点需要计算的乘法次数为(2N+1)模糊方向数,加法次数为2N模糊方向数,这种情况下,当N=100时,甚至更大时,计算量是非常大的,即使进行SIMD指令集优化,在很多情况下仍然不能满足要求,比如N=100时,优化后的汇编代码的执行时间也通常在几百毫秒以上,远不能达到实时处理要求。
通过文章: 高斯卷积核滤波的实现 我发现:高斯卷积核矩阵的值由矩阵的坐标和Sigma标准差决定,也就是说越靠近核矩阵中心的位置,在滤波过程中所占比重越大。 #include "iostream" #include "math.h" using namespace std; using namespa ...
转载
2021-07-12 16:06:00
616阅读
2评论
print(cv2.getGaussianKernel(3, 0))# 结果:[[0.25][0.5][0.25]]源码: https://github.com/ex2tron/OpenCV-Python-Tutorial/blob/master/10.%20%E5%B9%B3%E6%BB%91%E5%9B%BE%E5%83%8F/cv2_source_code_getGaussia
转载
2023-02-06 19:33:56
686阅读
计算机视觉系列教程 (二)卷积与滤波详解什么是滤波?要了解什么是滤波,首先要知道什么是波。图像原本只是一种随时间推移的波形图,也就是图像一开始处于时域状态,而我们并不能从时域图像中看出什么东西(除了一堆突起),而伟大的傅里叶公式让图像从时域中转换到的频域中。
引用一幅图 会看的更加清楚http://blog.jobbole.com/70549/从这幅图中可以看出来,图像其
高斯滤波(高斯平滑)是图像处理,计算机视觉里面最常见的操作。平时,我们都是用matlab或者opencv的函数调用:imfilter或者cvSmooth,并不关心底层的实现。然而当开发者要实做高斯滤波的时候,往往就会很迷惘,往往会被以下几个问题困扰:给定sigma,即标准偏差,怎么确定离散化后滤波器的窗口大小?给定窗口大小,怎么计算高斯核的sigma,即标准方差?怎么实现可分离滤波器?三份源码分别
1. 用途根据一些已知的量来预测未知的量。常用于运动预测。2. 定义卡尔曼滤波(Kalmanfiltering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。 由于观测数据中包括系统中的噪声和干扰的影响,最优估计也可看作是滤
转载
2024-07-25 13:09:04
65阅读
这一节来真正进入opencv的源码分析中,本次分析的函数是GaussianBlur(),即高斯滤波函数。在前前面博文《opencv源码解析之滤波前言2》: 这里我们分析源代码不需要深入到最底层,我们只需分析到函数crea
如果原图是彩色图片,可以对RGB三个通道分别做高斯平滑。cv2.GaussianBlur(src,ksize,sigmaX,sigmay,borderType)s
原创
2022-06-01 17:36:02
713阅读
高斯滤波及其实现高斯滤波的解释及其具体操作创建高斯滤波核1.高斯滤波的解释及其具体操作高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素
转载
2024-04-23 13:29:03
78阅读
"I listen to the radio"一、低通滤波1. 卷积2. 方盒滤波与均值滤波3. 高斯滤波4. 中值滤波5. 双边滤波二、高通滤波1. Sobel(索贝尔)算子2. Scharr(沙尔)算子3. Laplace(拉普拉斯)算子4. canny算子 系列所有代码,复制粘贴即可运行。 希望有能力的朋友还是拿C++运行一下。本节讨论图像的低通滤波(卷积,方盒,中值双边,高斯),高通滤波
转载
2024-03-19 13:46:03
287阅读
第一个问题:高斯函数为什么能作为图像处理中的滤波函数?高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对
转载
2023-11-24 23:16:47
78阅读
数字图像处理线性滤波: 输出图像fo(x,y)= T[ fi(x,y) ],T是线性算子,即:输出图像上每个像素点的值都是由输入图像各像素点值加权求和的结果。 非线性滤波的算子中包含了取绝对值、置零等非线性运算。 线性滤波器的原始数据与滤波结果是一种算术运算,即用加减乘除等运算实现,如均值滤波器(模板内像素灰度值的平均值)、高斯滤波
转载
2024-04-12 15:40:04
68阅读
高斯分布及其主要特征: (Gaussian Distribution and its key characteristics:)Gaussian distribution is a continuous probability distribution with symmetrical sides around its center.Its mean, median and mode
转载
2024-10-17 18:04:43
53阅读
一、前言在一幅图像中,低频部分对应图像变化缓慢的部分即图像大致外观和轮廓。高频部分对应图像变换剧烈的部分即图像细节(注意图像的噪声属于高频部分)。低通滤波器的功能是让低频率通过而滤掉或衰减高频,其作用是过滤掉包含在高频中的噪声。即低通滤波的效果是图像去噪声平滑增强,但同时也抑制了图像的边界即过滤掉图像细节,造成图像不同程序上的模糊。对于大小为M*N的图像,频率点(u,v)与频域中心的距离为D(u,
转载
2024-10-17 17:09:19
137阅读
本篇博客讲述对图像进行均值滤波,中值滤波,高斯滤波,高斯边缘检测滤波的意义在于:刚获得的图像有很多噪音。这主要由于平时的工作和环境引起的,图像增强是减弱噪音,增强对比度。想得到比较干净清晰的图像并不是容易的事情。为这个目标而为处理图像所涉及的操作是设计一个适合、匹配的滤波器和恰当的阈值。 (1) 均值滤波器:最简单均值滤波器是局部均值运算,即每一个像素只用其局部邻域内所有值的平均值来置换. (2)
转载
2024-05-08 13:31:18
50阅读