一、分水岭算法在许多实际运用中,我们需要分割图像,但无法从背景图像中获得有用信息。分水岭算法(watershed algorithm)在这方面往往是非常有效的。此算法可以将图像中的边缘转化成“山脉”,将均匀区域转化为“山谷”,这样有助于分割目标。分水岭算法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极
转载
2024-06-07 11:30:29
129阅读
网上摘录的:“分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。 分水岭变换得到的是输入图像的
OpenCV学习(7) 分水岭算法(1)
分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线。 下面左边的灰度图,可以描述为右边的地形图,地形的高度
转载
2024-06-11 14:52:53
26阅读
一、分水岭算法原理分水岭算法将图像看作地理学中的地形表面,图像中的高灰度值区域被看作山峰,低灰度值区域被看作山谷。进而实现图像的分割。假如我们向“山谷”中注水,水位则会逐渐升高,然后不同山谷的水就会汇集在一起,如果我们阻止来自不同山谷的水汇集,我们需在水流可能交汇处建立堤坝,我们需要把图像分成两个不同的集合:集水盆地和分水岭线。我们建立的堤坝即是分水岭线,也即是对原图像的分割。但是由于图像中的噪声
转载
2023-10-26 11:27:37
144阅读
任意的灰度图像可以被看做是地质学表面,高亮度的地方是山峰,低亮度的地方是山谷。给每个孤立的山谷(局部最小值)不同颜色的水(标签),当水涨起来,根据周围的山峰(梯度),不同的山谷也就是不同的颜色会开始合并,要避免这个,你可以在水要合并的地方建立障碍,直到所有山峰都被淹没。你所创建的障碍就是分割结果,这个就是分水岭的原理,但是这个方法会分割过度,因为有噪点,或者其他图像上的错误。所以OpenCV实现了
转载
2023-10-20 17:51:44
100阅读
分水岭分割方法是基于形态学操作一、分水岭分割方法1. 分水岭分割方法 基于浸泡理论的分水岭分割方法 基于连通图的方法 基于距离变换的方法 2. 分水岭算法应用 &
转载
2023-10-04 11:24:31
134阅读
分水岭图像分割算法借助地形学概念进行图像分割,近年来广泛使用。1. 基本原理和步骤1)原理分水岭方法将图像看作3-D的地形表示,即2-D的地基(对应图像空间)加上三维的高度(对应图像灰度)。实际中建立不同目标间的分水岭的过程常借助涨水法(水从低上涨)来讨论。如图1所示假设有水从各谷底空涌出并且水位逐渐增高,如果两个相邻的谷底(区域A和B)涌出的水位高过其间的峰间这些谁就会汇合。这个汇合的点就是分水
转载
2024-05-17 13:39:37
71阅读
基于分水岭算法的图像分割 文章目录基于分水岭算法的图像分割一、理论二、利用分水岭算法分割硬币 一、理论 任何灰度图像都可以看作是地形表面,其中高强度的表示峰和丘陵,而低强度的表示山谷。用不同颜色的水(标签)填充每个孤立的山谷(局部最小值)。水位上升取决于附近的峰值(梯度),来自不同山谷的水将开始融合,为避免这种情况,需要在水合并前建立障碍,继续填补水和建立障碍的工作,直到所有的山峰都在水下。
转载
2024-05-29 01:17:46
65阅读
0 引言迄今为止,我们讨论了基于三个主要概念的分割:边缘检测、阈值处理和区域提取。每种方法都有优点[例如全局阈值处理具有速度优势]和缺点[例如在基于边缘的分割中,需要进行后处理(如边缘连接)]。本节讨论的基于形态学分水岭概念的方法。分水岭分割体现了其他三种方法的许多概念,因此往往会产生更稳定的分割结果,包括连通的分割边界。1 原理分水岭方法是一种基于拓扑理论的数学形态学的分割方法,基本思想是把图像
转载
2023-12-28 21:58:44
156阅读
分水岭分割watershed图像自动分割的实现步骤:图像灰度化、滤波、Canny边缘检测查找轮廓,并且把轮廓信息按照不同的编号绘制到watershed的第二个入参merkers上,相当于标记注水点。watershed分水岭运算(实质是将markers的轮廓线的信息,转化为按轮廓区分的块状信息)绘制分割出来的区域,视觉控还可以使用随机颜色填充,或者跟原始图像融合以下,以得到更好的显示效果。相关api
转载
2024-03-27 19:36:04
80阅读
文章目录一、前言二、cv2.distanceTransform(src, distanceType, maskSize)三、基于标记的分水岭分
原创
2022-07-21 09:38:06
1785阅读
cvWatershed例子:
[cpp]
view plain
copy
1. #include<cv.h>
2. #include<highgui.h>
3. #include<iostream>
4.
5. using namespace std;
6.
7. Ip
转载
2024-05-10 16:14:01
82阅读
前提:任何两个相邻连接的物体不一定能被分水岭边界(marker标记为-1的像素)分开,比如在传递给 watershed 函数的初始标记图像中的前景是相互接触的话是分不开的。分水岭算法原理: 灰度图像可以看成是一个地形表面,高强度值表示山峰,低强度值及较低强度值表示山谷及其影响区域。用不同颜色的水(标签)填充每个孤立的山谷(局部极小值)
转载
2024-08-11 21:20:43
68阅读
脑血管医学图像颅内分割尝试——分水岭算法code 1.2 不分割颅内直接分割code 2.0 实验版code 3.0 批量处理版code 3.1 加入孔洞填充总结 code 1.2 不分割颅内直接分割import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
import string
import pylab
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; Mat img1, img2, img3, img4, img5,img6,img_result, img_gray1,
转载
2018-10-03 13:17:00
188阅读
把不同区域涂成不同颜色!
原创
2022-03-15 15:51:44
2263阅读
分水岭分割利用图像形态学进行图像区域分割。它将图像灰度值看作一幅地形图,在地形图的局部极小值处与地形最低点是连通的,从最低点开始注水,水流会逐渐淹没地形较低点构成的区域,直到整个图像被淹没。在这个过程中,通过相关形态学处理,可以实现一幅图像的分水岭分割。 以下GIF图像给出了形象说明: 图像来自 h
原创
2022-01-13 16:13:28
640阅读
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构
转载
2024-05-09 20:23:33
57阅读
目录前言正文原理流程代码函数cv.pyrMeanShiftFilteringcv2.connectedComponents(image, connectivity, ltype)参考 前言图像分割是按照一定的原则,将一幅图像分为若干个互不相交的小局域的过程,它是图像处理中最为基础的研究领域之一。目前有很多图像分割方法,其中分水岭算法是一种基于区域的图像分割算法,分水岭算法因实现方便,已经在医疗图
转载
2023-12-02 23:49:13
360阅读
文章目录1 原理2 算法改进3 API4 实例 1 原理 分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加
转载
2023-11-30 20:56:26
211阅读