目录一:OpenCV级联分类概念二:OpenCV级联分类操作步骤三:样本采集工作原理分析一四:样本采集工作原理分析二五:创建自己的级联分类5.1 创建自己的级联分类第一步5.2 创建自己的级联分类第二步5.3 创建自己的级联分类第三步5.4 创建自己的级联分类第四步5.5 创建自己的级联分类第五步一:OpenCV级联分类概念目前常用的实用性目标检测与跟踪的方式方法有以下两种帧差法
训练分类步骤:第一步 采集样本 1、 将正负样本分别放在两个不同的文件夹下面,分别取名pos和neg,其中pos用来存放正样本图像,neg用来存放负样本 注意事项:1、正样本要统一切成24*24像素(或者其他)的格式,建议保存成灰度图,节省空间 2、正样本的数目越多,训练的时间也将越长,训练出来的效果也就越好 3、负样本的数量相对于正样本一定要足够的多,很多朋友在训练的时候,往往出现了CPU占用
级联分类就是通过一步步过滤图片的特征,经过第一个分类如果不满足图片
原创 2023-03-17 11:04:57
486阅读
文章目录实验目的实验前明确的概念一、LBP分类1、数据准备2、说明一些概念3、效果4、实现代码二、HOG分类1、实验前言2、效果3、实现代码三、工程代码参考资料 实验目的选取LBP、HOG两种特征提取算法做分类,去识别人的图像。实验前明确的概念LBP、HOG是两种特征提取算法。一、LBP分类1、数据准备如果想要将人脸准确地检测出来,需要通过建立人脸模型,获取准确区分人脸的分类LBP这里我们使
转载 2023-11-04 22:46:15
118阅读
# 使用OpenCV和Java实现局部二值模式(LBP) 局部二值模式(Local Binary Patterns,LBP)是一种有效的纹理描述子,广泛应用于图像处理和计算机视觉任务中。其主要应用包括面部表情识别、纹理分类等。这篇文章将带你了解如何使用OpenCV和Java来实现LBP,并提供相关代码示例。 ## LBP的基本原理 LBP的基本思想是通过比较像素与周围邻居像素的值来生成一个二
原创 2024-09-10 06:09:15
47阅读
使用增强级联的弱分类包括两个主要阶段:训练和检测阶段。对象检测教程中有描述使用基于 HAAR 或 LBP 模型的检测阶段。这里主要介绍训练增强分类级联所需的功能,包括:准备训练数据、执行实际模型训练、可视化训练。目录一、训练数据准备1、负样本2、正样本3、命令行参数4、标注工具二、级联训练1、通用参数2、级联参数3、增强分类参数4、Haar-like特征参数三、可视化级联分类一、训练数据准
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数 rgb = io.imread(f) # 读取图片 gray =
转载 2024-03-03 10:11:20
157阅读
python种类分为Java python  ,C python ,PHP python 等。 他们最终的转换都是转化为C,再转换为字节码。python 解释,内存管理。 python2  python3  python3包含python2所有的功能#!/usr/bin/env python  代表python解释的位置python 3 无需关
转载 2023-06-18 20:36:38
69阅读
目录1.直方图的定义2.calcHist()函数说明3.绘制直方图3.1 读取原图像并检查图像是否读取成功3.2 定义直方图参数并计算直方图3.3 绘制直方图4.关于BGR直方图的绘制4.1 读取原图像并检查图像是否读取成功4.2 分通道显示4.3 分B,G,R计算直方图4.4 绘制直方图 1.直方图的定义要理解直方图,绕不开“亮度”这个概念。人们把亮度分为0到255共256个数值,数值越大,代
转载 2024-10-09 11:28:52
88阅读
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类一、项目结构二、源码1.程序入口int main(void) { //int clusters=1000; //Classfication_SVM c(clusters); 特征聚类 //c.Tra
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类 流程:    收集样本,处理样本     训练分类     目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类训练人脸检测的样本与相关文件1 、opencv里的分类大概介绍:  OpenCV中有两个程序可以训练级联分类opencv_haartraining and opencv_traincascade``。 ``opencv_tra
检测任务 主要参考了几篇文献博客: https://docs.opencv.org/3.3.1/dc/d88/tutorial_traincascade.html 后来想了下,还是opencv自己的文档最好用,需要耐心读就好。 首先明确级联分类cascadeClassifier的原理。核心是弱分类与强分类的等价性,当多个弱分类级联起来之后,即使每个单独的分类分类效果很差,比如
         目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。训练样本分为正例样本和反例样本,其中正例样本是指
目标在本教程中,我们将学习Haar级联对象检测的工作原理。我们将使用基于Haar Feature的Cascade分类了解人脸检测和眼睛检测的基础知识。我们将使用cv::CascadeClassifier类来检测视频流中的对象。特别是,我们将使用以下函数: cv::CascadeClassifier::load来加载.xml分类文件。它可以是Haar或LBP分类 cv::CascadeClas
       目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指
一、简介       目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类训练,得到一个级联的boosted分类分类中的"级联"是指最终的分类是由几个简单分类级联组成。在图像检测中,被检窗口依次通过每一级分类, 这样在
1.概述级联分类这个坑早该挖的了,由于本人之前使用的是win10系统家庭版的某种关系,并没有成功训练出xml,趁着换了Linux和比赛需要就再次挖挖坑,这里用到的是Opencv自带的两个分类来训练样本,这里仅讲述linux环境下分类的使用方法。Linux版本两个应用程序位于/usr/local/bin文件夹中,分别为opencv_createsamples和opencv_traincasca
  • 1
  • 2
  • 3
  • 4
  • 5