目录1 简介2 算法原理2.1 LBP原理介绍2.2 圆形LBP算子2.3 LBP旋转不变性及等价模式2.4 人脸检测流程3 基于OpenCV的实现 1 简介LBP指局部二值模式(Local Binary Pattern),是一种用来描述图像局部特征的算子,具有灰度不变性和旋转不变性等显著优点。LBP常应用于人脸识别和目标检测中,在OpenCV中有使用LBP特征进行人脸识别的接口,也有用LBP特
基于形态学处理+基本特征实现车牌区域提取1、形态学梯度2、Sobel边缘检测实际上,提取车牌还是那个思路:区域分离->轮廓检测->特征判断这里提供这样一个算法,来源于《OpenCV图像处理编程实例》步骤如下:边缘检测,检测垂直边缘,尽量减少横向的边缘连通车牌区域----->实现手段:形态学梯度、或者Sobel边缘检测的垂直方向,当然也可以用其他边缘检测方法对边缘实现二值化区域填充
转载 2024-02-17 16:05:47
57阅读
OpenCV 学习笔记day12-roi区域提取函数inRange()代码 day12-roi区域提取利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。 先通过cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像(色彩对比度比较高),然后通过inRange()函数获得ROI区域的Mask,再利用bitwise_not()函数取反
转载 2023-12-24 14:37:28
263阅读
作者 | 小白小伙伴们可能会觉得从图像中提取文本是一件很麻烦的事情,尤其是需要提取大量文本时。PyTesseract是一种光学字符识别(OCR),该库提了供文本图像。PyTesseract确实有一定的效果,用PyTesseract来检测短文本时,结果相当不错。但是,当我们用它来检测表格中的文本时,算法执行失败。图1.直接使用PyTesseract检测表中的文本图1描绘了文本检测结果,绿色框包围了检
转载 2024-02-19 13:49:12
138阅读
问题:如果文字大小存在比较大的差异时,怎么办? 答:这里给出另外一种策略,不是使用投影直方图,而是使用膨胀以及寻找连通区域。进行分割。 1)对图像二值化 2)对二值化之后的图像进行膨胀操作(dilate) 3)在2)得到的结果上寻找联通区域的边界(findContours)。 4)利用3)得到的结果画出方框。 本文是对这里的文章的另一种实现。使用C++。首先,读取图片Mat img =
转载 2024-03-23 12:38:19
447阅读
通域分析对于图像处理后面涉及到模式识别的内容来说是基础连通区域(Connected Component)一般是指图像中具有相同像素值且位置相邻的前景像素点组成的图像区域(Region,Blob)。连通区域分析(Connected Component Analysis,Connected Component Labeling)是指将图像中的各个连通区域找出并标记。 连通区域分析是一种在CVPR和图像
转载 2023-11-14 09:20:41
473阅读
HOG特征一、什么是HOG特征是关于目标区域梯度方向的特征是一个向量 二、如何提取HOG特征图片归一化处理,减弱光线、阴影等影响图像梯度计算,一般用卷积方法,水平模板为[-1,0,1],竖直模板为[-1,0,1]T,看到这个,很容易联想到边缘检测,实际上,这个梯度很大程度上就代表了图像的边缘轮廓信息统计梯度方向,将目标窗口(win:64*128)继续细分为块(block:16*16),而
转载 2024-05-28 08:20:29
64阅读
一、目标:将图像中我们需要的部分提取出,进行扫描,提取出其中的文字。二、思路:首先我们要定位我们在图像中需要的部分,将其轮廓提取出。 - 1将图像变换大小 - 2灰度化,高斯滤波,边缘检测 - 3轮廓提取 - 4筛选第三步中的轮廓,选择其中较大的 - 5绘制轮廓的近似,返回其中有四个点的轮廓image = cv2.imread(args["image"]) ratio = image.shape[
*提取直线、轮廓和区域之前的二值边缘分布图有两个缺点。首先,检测到的边缘过厚,这导致更加难以识别物体的边界;第二,通常不能找到这样的阈值:低到足以检测到图像中的所有重要的边缘同时又避免产生太多无关紧要的边缘。Canny算法试图解决这样的问题。使用cv::Canny()函数需要给出低阈值和高阈值两个阈值。canny算子通常是基于sobel算子,低阈值是宽松阈值,很多不需要的也被检测出来了;高阈值则界
OpenCV数字图像处理之ROI区域提取利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。1、实现原理先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用cv.bitwise()函数提取得到ROI区域。2、使用的函数简述(1) cv.cvtCol
关于图片处理,经常遇到的一个问题是如何获取roi区域(说白了就是抠图),并对roi区域赋值,比如说赋值成黑色。首先,关于如何获取roi区域opencv的Mat类中提供了两种方法。代码如下:Mat operator() (Range rowRange, Range colRange) const Mat operator() (const Rect &roi) const上述两种
一、提取直线、轮廓和区域1.1 canny边缘检测二值边缘分布图有两个主要缺点:第一,检测到的边缘过厚,这加大了识别物体边界的难度;第二,也是更重要的,通常不可能找到既低到足以检测到图像中所有重要边缘,又高到足以避免产生太多无关紧要边缘的阈值。这是一个难以权衡的问题,Canny 算法试图解决这个问题。简单的来说Canny 算法就是在各方向求导,找到局部最大值。实现步骤:用高斯滤波器平滑图像用Sob
转载 2024-03-10 23:33:40
552阅读
有时,我们只需要对一幅图像的一部分进行处理.本节会教会我们如何定义感兴趣的区域.Getting ready假设我们想合并两个不同大小的图像.例如,我们将下面的小的图标添加到我们的测试图像上:但是使用cv::add函数要求两个图像具有相同的大小.在这个例子中,必须定义感兴趣的区域(ROI)使得cv::add可以被使用.它只会应用在和我们logo图像相同大小的ROI区域.ROI的位置将决定logo图像
转载 2024-08-29 16:44:56
29阅读
昨天不是说同学问我怎么绘制出轮廓的中心线。然后我上网查了一下其实这个有专门的算法叫做细化算法。用专业术语去描述绘制出轮廓的中心线叫做(提取图像的骨架)。然后这一篇博客呢是我对这个细化算法的解读与实操~一、thinning algorithm算法描述图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization)的一种操作运算。切记:前提条件一定是二值图
矩是描述图像特征的算子,被广泛用于图像检索和识别、图像匹配、图像重建、图像压缩以及运动图像序列分析等领域。本节中将介绍几何矩与Hu矩的计算方法以及应用Hu矩实现图像轮廓的匹配。几何矩与中心矩图像几何矩的计算方式如式(7.8)所示:其中是像素处的像素值。当x和y同时取值0时称为零阶矩,零阶矩可以用于计算某个形状的质心,当x和y分别取值0和1时被称为一阶矩,以此类推。图像质心
从图像中提取文本可能会让人筋疲力尽,尤其是当您要提取大量内容时。一个众所周知的文本提取库是PyTesseract,一种光学字符识别 (OCR)。该库将为您提供给定图像的文本。PyTesseract 真的很有帮助,第一次知道 PyTesseract,我直接用它来检测一些短文本,结果很满意。然后,我用它来检测表格中的文本,但算法执行失败。 图 1. 直接使用 PyTesseract 检测表格中的文本
小伙伴们可能会觉得从图像中提取文本是一件很麻烦的事情,尤其是需要提取大量文本时。PyTesseract是一种光学字符识别(OCR),该库提了供文本图像。PyTesseract确实有一定的效果,用PyTesseract来检测短文本时,结果相当不错。但是,当我们用它来检测表格中的文本时,算法执行失败。图1.直接使用PyTesseract检测表中的文本图1描绘了文本检测结果,绿色框包围了检测到的单词。可
# 使用 Python 进行 Blob 分析OpenCV 在图像处理中,Blob 分析是一个重要的任务,主要用于识别、检测和分类图像中的不同物体。在本篇文章中,我们将利用 Python 和 OpenCV 库来实现 Blob 分析。文章将详细介绍整个流程,并逐步指导你如何实现这一功能。 ## 流程概述 首先,我们需要明确整个流程。以下是 Blob 分析的主要步骤: | 步骤 | 描述 |
原创 2024-09-25 07:13:32
191阅读
OpenCV和dlib进行人脸检测基于opencv进而dlib算法进行人脸检测方法友友们你们好呀! 周末最后一作,搞完快点睡觉QAQ。废话不多说,赶紧进入正题吧,本篇文章将简要讲述用OpenCV和dlib算法库实现人脸检测的应用(又是调库操作(小声))模型结果预览 这里将人脸识别框画出并且将框抠走放在图片的左上角数据准备俗话说:“工欲善其事必先利其器”。那么在学习图像处理领域方面,器一定就是数据集
一副尺寸为 M × N 的图像可以用一个 的图像可以用一个 M × N 的矩 阵来表示,的矩 阵来表示,阵元素的值表示这个位置上像亮度,一般来说越大该点亮。 一般来说,灰度图用 2维矩阵表示,彩色(多通道)图像用 3维矩阵( M × N × 3)表示。对于图像显来说,目前大部分设备都是用无符号 )表示。对于图像显来说,目前大部分设备都是用无符号 8 位整 数(类型为 CV_8U ) 图像数据在
  • 1
  • 2
  • 3
  • 4
  • 5