算法介绍Canny是边缘检测算法,在1986年提出是一个很好的边缘检测器很常用也很好用的图像处理方法## 算法实现步骤高斯模糊 GaussianBlur() 灰度转换 cvtColor 计算梯度 Sobel\ScharrKaTeX parse error: Undefined control sequence: \ at position 75: … \end{bmatrix} \̲ ̲KaTeX
转载 2023-12-27 21:18:17
142阅读
Canny算子是John.F.Canny于20世纪80年代提出的一种多级边缘检测算法。该算子最初的提出是为了能够得到一个最优的边缘检测,即:检测到的边缘要尽可能跟实际的边缘接近,并尽可能的多,同时,要尽量降低噪声对边缘检测的干扰。是一个很好的边缘检测器,很常用也很实用的图像处理方法。总共可以分为五步:高斯模糊GaussianBlur。将输入的彩色图像进行高斯模糊来去掉噪声灰度转换cvtColor。
一、边缘提取常用算子1、sobel算子边缘检测//Sobel梯度算子 void imageSobel(){ const char* name = "lena.tif"; IplImage* image = cvLoadImage(name, CV_LOAD_IMAGE_GRAYSCALE); if (image == NULL){ printf("image load failed.\n
前言耐心看完一定会有收获的,大部分内容也会在代码中体现,结合理论知识和代码进行理解会更有效。代码用opencv4.5.1(c++)版实现一、边缘检测算法边缘检测算法是指利用灰度值的不连续性质,以灰度突变为基础分割出目标区域。对铝铸件表面进行成像后会产生一些带缺陷的区域,这些区域的灰度值比较低,与背景图像相比在灰度上会有突变,这是由于这些区域对光线产生散射所引起的。因此边缘检测算子可以用来对特征的提
1.图像边缘填充1.1卷积边界问题图像卷积的时候边界像素不被卷积操作,原因在于边界像素没有完全跟kernel重叠,只有当3X3的滤波时候有一个像素的边缘没有被处理,5x5滤波的时候有两个像素边缘没有处理。1.2.处理边缘在卷积开始之前增加边缘像素,填充的像素值为0或者RGB黑色,比如3x3在四周各填充1各像素的边缘,这样就确保图像的边缘被处理,在卷积处理hi后再去掉这些边缘openCV中默认的处
转载 2024-03-15 19:55:01
200阅读
OpenCV 学习(利用滤波器进行边缘提取)通过低通滤波器,我们可以将图像平滑,相反的,利用高通滤波器可以提取出图像的边缘。Sobel 滤波器Sobel 滤波器是一种有方向性的滤波器,可以作用在 X 方向或 Y 方向。 关于这种滤波器的理论介绍可以参考:https://en.wikipedia.org/wiki/Sobel_operator函数原型如下:void Sobel( InputArra
转载 2024-01-28 00:30:46
271阅读
轮廓发现简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果。可以用图像二值化得到二值化图像进行轮廓发现,也可以先边缘提取然后轮廓发现。完整代码import cv2 as cv import numpy as np #边缘提取 def egde_demo(image): blurred=cv.GaussianBlur(image,(3
文章目录1.Canny算法的介绍2.Canny算法流程完整代码 1.Canny算法的介绍Canny算法是一种边缘检测算法,它是由John Canny在1986年提出的。 Canny边缘检测是从不同视觉对象中提取有用的结构信息并大大减少要处理的数据量的一种技术,目前已广泛应用于各种计算机视觉系统。2.Canny算法流程Canny边缘检测算法是由以下步骤组成的: 1.图像降噪。梯度算子可以用于增强图
平滑(模糊)操作: 为了较少图片的噪音和伪影,平滑图像与图像模糊处理是相同的含义,平滑处理即是通过操作后,使得图像的像素值与邻域内其他像素值的的变化程度减小。在一张图像上,边缘的像素值是变化程度最剧烈的地方,而其他相对平缓。因此,平滑图像最直观的表现是图像的上物体的边缘轮廓变得模糊。有五种不同的平滑操作:1.简单模糊和方框性滤波器   blur2.中值滤波器&nbsp
在像素矩阵(矩阵)中进行掩膜操作是非常简单的。它的核心思想就是根据提供的一个掩膜矩阵(所谓的核)重新计算每一个像素的值(类似卷积)。这个掩膜矩阵保存着每一个临近像素以及像素本身对新生成的像素值的影响。用数学的观点描述就是我们利用掩膜矩阵保存的权重值进行加权平均后计算新的像素值。测试场景让我们思考下图像对比度增强的问题。我们希望用如下的公式去重新计算每一个像素值: 上图第一种标记是以公式的方式,第二
# 使用 Python OpenCV 实现边缘填充 边缘填充是图像处理中的一个常见任务,它可以在图像的某个区域内进行填充,通常是基于图像的边缘检测结果。本文将详细介绍如何使用 Python 的 OpenCV 库来实现这一功能,适合初学者学习。 ## 流程概述 我们将通过以下步骤来完成边缘填充的任务: | 步骤 | 描述 | |---
原创 8月前
93阅读
在这篇博文中,我们将详细探讨如何使用 Python OpenCV提取图像的边缘边缘检测是计算机视觉中的一个重要任务,它可以帮助我们识别图像中的对象和边界。下面我们将通过不同结构详尽地阐述这个过程,包括环境预检、部署架构、安装过程、依赖管理、服务验证以及迁移指南。 ### 环境预检 在开始之前,我们需要确保本地环境支持 Python 和 OpenCV。以下的四象限图帮助我们分析不同操作系统
原创 6月前
29阅读
目录【1】算法简介【2】算子参数介绍【3】完整代码【1】算法简介        Sobel算子是一种用于边缘检测的线性滤波器,如果把图像看做是一个二维函数,那么Sobel算子就是图像在垂直和水平方向上变化的速度(即梯度)。Sobel算子在水平和垂直方向上做像素值的差分,能够得到图像梯度的近似值,在像素周围进行运算时,能
# OpenCV Python 边缘提取的科普指南 边缘提取是计算机视觉中的一个重要技术,它能够帮助我们识别图像中的对象边缘和轮廓。在许多应用中,如物体检测、图像分割和场景分析,边缘提取都是一个不可或缺的步骤。本文将介绍如何使用 OpenCV 和 Python 进行边缘提取,并给出完整的代码示例,帮助读者深入理解这一技术。 ## 什么是边缘提取边缘提取的核心思想是找出图像中像素灰度值发生
原创 8月前
196阅读
# OpenCV边缘提取技术与Python实现 边缘提取是计算机视觉中的一个重要任务,它能够帮助我们识别图像中的重要特征和轮廓。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,为图像处理提供了丰富的工具和函数。在这篇文章中,我们将探讨如何使用Python与OpenCV进行边缘提取,并提供简单的代码示例来帮助理解。 ## 边缘提取
原创 2024-10-12 06:13:53
94阅读
实现自己的线性滤波器 目的本篇教程中,我们将学到: 用OpenCV函数 filter2D 创建自己的线性滤波器。 原理 Note以下解释节选自Bradski and Kaehler所著 Learning OpenCV 。 卷积高度概括地说,卷积是在每一个图像块与某个算子(核)之间进行的运算。 核是什么?核说白了就是一个固定大小的数值数组。
评价房屋提取上一步提取出房屋内容后,需要进行提取评价。房屋选择限于无树木遮挡的屋顶,对房屋边缘计算法向量,归化到0-90度之间,根据集中性评价利用性。系统学习一下vector的用法:本次评价过程主要为: 1、对grabcut图像去除绿色矩形框(存在边缘渐变的效果); 2、对提取的建筑物进行二值化; 3、获得提取的建筑物的最外层轮廓(闭合),并使用宽度为1的线进行描绘; 4、对表示边缘的线进行法向量
OpenCV边缘检测Sobel算子自写Sobel算子边缘检测:Laplace算子自写Sobel算子边缘检测:Canny算子Hough变换检测直线 Sobel算子OpenCV调用:C++: void Sobel ( InputArray src,//输入图 OutputArray dst,//输出图 int ddepth,//输出图像的深度 int dx, int dy, int ksi
漫水填充漫水填充是一个非常有用的功能。它经常被用来标记或者分离图像的一部分以便对其进行进一步处理或分析。漫水填充也可以用来从输入图像获取掩码区域,掩码会加速处理过程,或只处理掩码指定的像素点。floodFill() [2/2]int cv::floodFill (InputOutputArray image,   InputOutputA
基本概念1.算子算子也就是滤波器,或者又称作卷积核,通常是一个3x3或者8x8的矩阵,在数字图像处理中有广泛的应用,将滤波器用来对二维图像中的每个像素做点积操作,及对应的像素点相乘再求和,可以达到边缘提取,图像分割等各种效果2.图像的梯度在二维图像中,边缘就是图像的像素值发生突变的那些点的集合,边缘的像素点与周围领域的像素点在亮度上存在较大差异,在高等数学中梯度代表了函数在某个点上最大的方向导数,
  • 1
  • 2
  • 3
  • 4
  • 5