1.sobel算子 概述:x方向和y方向的算子如下图所示。将x方向的算子放入图像进行开窗计算,容易想象,在图像的边界区域,计算出的值绝对值较大,这样可以计算出垂直的边界;同样用Gy进行开窗计算,可以计算出水平边界。通过融合,我们可以获得图像的边界信息。函数:cv::Sobel(cv::InputArray src, cv::OutputArray dst, int ddepth, int
图像的采样采样是把空域上或时域上连续的图像(模拟图像)转换成离散采样点(像素)集合(数字图像)的操作。 采样越细,像素越小,越能精细地表现图像。不同采样间距的效果如下: a.采样间隔16 &nb
对于灰度图像f(x,y),,其中N是图像中所有灰度数,r为图像中的所有像素数,对概率分布p(k)进行累计求和可得图像的累计归一化直方图h(k),即.灰度直方图用来描述图像中各个灰度级的像素个数(或该灰度级出现的次数(频率)),图像的横坐标表示灰度级,纵坐标表示图像中该灰度级出现的次数(频率)。opencv提供了一个简单计算数组集(通常是图像或分割后的通道)的直方图函数calcHist,下面对其接口
灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其横坐标是灰度级,纵坐标是该灰度出现的频率(像素的个数)。在opencv中可以通过cvCreateHist()来生成直方图 CvHistogram* cvCreateHist(
int dims,
int* sizes,
int type,
float** ranges=N
opencv中 equalizeHist()均衡化直方图1、EqualizeHist函数函数作用:直方图均衡化,,用于提高图像的质量2、EqualizeHist函数调用形式C++: void equalizeHist(InputArray src, OutputArray dst)#include <opencv2/imgproc/imgproc.hpp>
#include <o
转载
2023-10-11 08:57:49
74阅读
opencv中图像的均值化都是基于灰度图的,直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法,能提高图片的对比度。1.自带函数均值化函数原型:equalizeHist( InputArray src, OutputArray dst );注:src为单通道8位的图片,dst为与src相同大小和类型的目标图像代码示例:#include <opencv2/opencv.hpp&g
一、计算图像直方图的函数:cv2.calcHist()cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) ->histimaes:输入的图像channels:选择图像的通道mask:掩膜,是一个大小和image一样的np数组,其中把需要处理的部分指定为1,不需要处理的部分指定为0,一般设置
直方图的均衡化我们先来看看原图的直方图我们发现高亮区域的像素点很少,主要像素点集中在中低亮度区域我们先设置一个阈值,也就是图中的那根粉色的线,当某一亮度值的像素点的个数低于这个值时,我们认为这些像素点是无关紧要的。灰度图的亮度值范围是0-255,若亮度值为1的像素点的个数低于阈值,我们可简单的把亮度为1的像素点的亮度全设为0,同理,我们从高往低找,若亮度值为254的像素点的个数低于阈值,我们可以把
HE: histogram equalization 直方图均衡化AHE: adapative histogram equalization 自适应直方图均衡化, 加了分块而已。CLAHE: contrast-limited adapative histogram equalization 对比度受限的自适应直方图均衡化, 可用性最好。 直方图均衡化的作用是
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。 直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。 直方图均衡化就是把给定的图像的直方图分布改变成“均匀”分布直方图。直方图均衡化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的
今天写直方图,学了几个相关函数 1. mixChannels void mixChannels(const Mat* src, int nsrc, Mat* dst, int ndst, const int* fromTo, size_t npairs)功能: 把 src 中指定的若干通道 复制到 dst中src: 输入图像, 可以多张nsrc: 有多少张输入图像dst: 输出图像,可以多张nd
转载
2014-07-15 16:55:00
124阅读
2评论
文章目录直方图(histogram)numpy.ravelenumerate绘制直方图matplotlib.pyplot.hist示例计算图像直方图cv2.calcHist示例==错误记录==直方图应用直方图均衡化cv2.equalizeHist示例局部直方图均衡化cv2.createCLAHE示例直方图比较cv2.compareHist示例直方图比较中的bins如何理解==错误记录==二维直方
转载
2023-10-11 15:54:25
201阅读
目录1 灰度直方图简介1.1 灰度直方图概念1.2 灰度直方图作用1.3 绘制的直方图1.4 归一化直方图2 matplotlib库 绘制直方图-hist()3 OpenCV库 绘制直方图-calcHist()参考资料 1 灰度直方图简介1.1 灰度直方图概念灰度直方图(histogram)是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。其中,横坐标是灰
def createTrainingInstances(self, images): start = time.time() hog = cv2.HOGDescriptor() insta
原创
2022-07-21 09:30:25
969阅读
HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测。
算法流程图如下(这篇论文上的):
下面我再结合自己的程序,表述一遍吧:
1.对原图像gamma校正,img=sqrt(img);
2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率。
3.将图像每16*16(取其他也可以)个像素分到一个cell中。对于25
转载
2020-09-10 14:08:00
677阅读
2评论
# Python获得图像梯度直方图
## 介绍
在计算机视觉和图像处理中,图像梯度是一种常用的特征,用于表示图像中像素强度变化的方向和幅度。而图像梯度直方图则是对图像梯度进行统计分析的一种方法,可以用于图像分类、边缘检测等应用场景。本文将教会你如何使用Python获得图像梯度直方图。
## 流程
下面是获得图像梯度直方图的整个流程:
| 步骤 | 描述 |
| ---- | ---- |
|
图像梯度图像梯度Sobel理论基础计算水平方向偏导数的近似值计算垂直方向偏导数的近似值Sobel算子及函数使用注意点:参数ddepth方向计算x方向和y方向的边缘叠加Scharr算子及函数使用Sobel算子和Scharr算子的比较Laplacian算子及函数使用算子总结 图像梯度图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;相反,对于图像中比较平滑的部分,其
一、图像梯度梯度简单来说就是求导。OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器: Sobel,Scharr 和 Laplacian。其中Sobel,Scharr 是求一阶导数。Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化,而 Laplacian 是求二阶导数。1、Sobel算子原理:前一个Sobel矩阵与原始图像A进行卷积操作后得到的是右边的像素值减去左边
学习图像梯度,图像边界等 使用到的函数有: cv2.Sobel(), cv2.Schar(), cv2.Laplacian() 等原理 梯度简单来说就是求导,OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器: Sobel,Scharr 和 Laplacian。Sobel, Scharr 其实就是求一阶或二阶导数。 Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优