初始化数据 int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); 设置训练数据 float labels[4] = {1.0, -1.0, -1.0, -1.0}; Mat labelsMat(4, 1, CV_32FC1, labels
原创 2014-03-28 13:39:00
575阅读
文章目录前言一、SVM1.1 SVM 使用类型1.2 核函数(1) 线性核(LINEAR )(2) 多项式核(3) RBF 高斯核函数(4) SIGMOID核函数(5) POLY核函数1.3 参数1.3.1 与核函数相关的参数如下1.3.2 与SVM类型选择相关的参数设置1.3.3 训练参数相关二、SVM分类问题步骤1.数据准备2.SVM模型搭建总结 前言本文主要以使用svm做图像分类为主要任务
转载 2023-08-07 19:00:31
78阅读
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm21.2 SVM案例介绍在使用支持向量机模块时,需要先使用函数cv2.ml.SVM_create()生成用于后续训练的空分类器模型。该函数的语法格式为:svm = cv2.ml.SVM_create( )获取了空分类器svm后,针对该模型使用svm.train()函数对训练数据进行训练,其语法
1. 理论基础使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是...
原创 2021-09-01 10:58:52
4228阅读
车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤:1) 分割: 检测并检测图像中感兴趣区域;2)特征提取: 对字符图像集中的每个部分进行提取;3)分类: 判断图像快是不是车牌或者 每个车牌字符的分类。 车牌识别分为两个步骤, 车牌检测, 车牌识别, 都属于模式识别。基本结构如下:一、车牌检测  1、车牌局部化(分割车牌区域),根据尺寸等基本信息去除非车牌图像
文章目录SVMHog特征Hog特征+SVM实现狮子识别 SVM支持向量机:寻求一个最优的超平面,实现样本的分类下面我们用SVM实现一个根据身高体重对男女生分类的问题import cv2 import numpy as np import matplotlib.pyplot as plt # 准备数据 rand1 = np.array([[155,48],[159,50],[164,53],[16
OpenCV 3.3中给出了支持向量机(Support Vector Machines)的实现,即cv::ml::SVM类, 此类的声明在include/opencv2/ml.hpp文件中,实现在modules/ml/src/svm.cpp文件中,它既支持两分类,也支持多分类,还支持回归等, OpenCVSVM实现源自libsvm库。其中: (1)、cv::ml::SVM类:继承自cv::ml
Opencv SVM 的使用方法: #include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/ml/ml.hpp> usingnamespace cv; int main() { // Data for visual represent
这一次主要是实践部分.首先还是贴出源码.#include<opencv2\opencv.hpp> #include <vector> #include<iostream> using namespace std; using namespace cv; #define n 8 //n个训练样本 int main() { //【1】 设置
转载 2024-04-16 10:31:11
63阅读
目标 在这一章中 我们将对SVM有一个直观的了解 理论 线性可分数据 考虑下面的图像,它具有两种数据类型,红色和蓝色。在kNN中,对于测试数据,我们用来测量其与所有训练样本的距离,并以最小的距离作为样本。测量所有距离都需要花费大量时间,并且需要大量内存来存储所有训练样本。但是考虑到图像中给出的数据,
转载 2020-04-02 13:05:00
63阅读
2评论
SVM(support vector machine)支持向量机是一种监督学习算法,可用于分类、回归、离群点检测。引入软间隔因为:(1)不是任何任务都能找到好的核函数使其线性可分;(2)就算实现(1),但也无法判断模型线性可分是不是过拟合造成 。支持向量(support vector):到超平面最近的样本点间隔(margin):各异类支持向量到超平面的距离之和。硬间隔:要求所有样本点都满
转载 2023-12-05 02:22:35
91阅读
支持向量机(SVM)中最核心的是什么?个人理解就是前4个字——“支持向量”,一旦在两类或多累样本集中定位到某些特定的点作为支持向量,就可以依据这些支持向量计算出来分类超平面,再依据超平面对类别进行归类划分就是水到渠成的事了。有必要回顾一下什么是支持向量机中的支持向量。上图中需要对红色和蓝色的两类训练样本进行区分,实现绿线是决策面(超平面),最靠近决策面的2个实心红色样本和1个实心蓝色样本分别是两类
转载 2016-11-02 21:55:00
379阅读
2评论
 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。    其具有以下特征:    (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般
转载 2023-10-07 11:26:22
111阅读
#include "cv.h" #include "highgui.h" #include "stdafx.h" #include <ml.h> #include <iostream> #include <fstream> #include <string> #include <vector> using namespace cv; u
转载 2016-04-17 19:46:00
187阅读
2评论
前两篇文章写了基于两种特征提取的SVM数字识别这篇文章主要是关于模型评估,即识别数字的正确率 下面代码是opencv3  c++加载的XML文件是之前代码训练好的。测试集是我的“”数字检测样本“”文件夹下的0-9个文件夹所包含的检测样本  #include <stdio.h> #include <time.h> #includ
opencv3.0和2.4的SVM接口有不同,基本可以按照以下的格式来执行: ml::SVM::Params params; params.svmType = ml::SVM::C_SVC; params.kernelType = ml::SVM::POLY; params.gamma = 3; Ptr<ml::SVM> svm = ml::SVM::create(params);
转载 2024-07-26 16:40:13
249阅读
目录HOG是什么?HOG vs SIFTHOG步骤HOG在检测行人中的方式Ope
原创 2022-06-27 23:40:42
845阅读
1评论
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘chinese’:[95,69,91,52,60,80,78,81,96,82],‘rank’:[0...
原创 2021-06-10 17:30:13
1074阅读
加载opencv自带的行人检测器,进行识别代码import osimport sysimport cv2import loggingimport numpy as nphog = cv2.HOGDescriptor()hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())pwd = os.getcwd()test_dir = os.path.join(pwd, 'TestData')cv2.namedWindo
原创 2021-07-29 11:33:14
453阅读
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘
原创 2022-03-01 10:24:46
2436阅读
  • 1
  • 2
  • 3
  • 4
  • 5