初始化数据 int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); 设置训练数据 float labels[4] = {1.0, -1.0, -1.0, -1.0}; Mat labelsMat(4, 1, CV_32FC1, labels
原创 2014-03-28 13:39:00
575阅读
加载opencv自带的行人检测器,进行识别代码import osimport sysimport cv2import loggingimport numpy as nphog = cv2.HOGDescriptor()hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())pwd = os.getcwd()test_dir = os.path.join(pwd, 'TestData')cv2.namedWindo
原创 2021-07-29 11:33:14
453阅读
#include <stdio.h> #include <time.h> #include <math.h> #include
原创 2021-07-29 13:36:28
384阅读
1. 理论基础使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是...
原创 2021-09-01 10:58:52
4228阅读
OpenCV 3.3中给出了支持向量机(Support Vector Machines)的实现,即cv::ml::SVM类, 此类的声明在include/opencv2/ml.hpp文件中,实现在modules/ml/src/svm.cpp文件中,它既支持两分类,也支持多分类,还支持回归等, OpenCVSVM实现源自libsvm库。其中: (1)、cv::ml::SVM类:继承自cv::ml
Opencv SVM 的使用方法: #include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/ml/ml.hpp> usingnamespace cv; int main() { // Data for visual represent
这一次主要是实践部分.首先还是贴出源码.#include<opencv2\opencv.hpp> #include <vector> #include<iostream> using namespace std; using namespace cv; #define n 8 //n个训练样本 int main() { //【1】 设置
转载 2024-04-16 10:31:11
63阅读
SVM(support vector machine)支持向量机:线性分类:先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样:这种方法被称为:线性分类器,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。也就是说,数据不总是二维的,比如,三维的超平面是面。但是有个问题:上述两种超平
文章目录前言一、SVM1.1 SVM 使用类型1.2 核函数(1) 线性核(LINEAR )(2) 多项式核(3) RBF 高斯核函数(4) SIGMOID核函数(5) POLY核函数1.3 参数1.3.1 与核函数相关的参数如下1.3.2 与SVM类型选择相关的参数设置1.3.3 训练参数相关二、SVM分类问题步骤1.数据准备2.SVM模型搭建总结 前言本文主要以使用svm做图像分类为主要任务
转载 2023-08-07 19:00:31
78阅读
支持向量机(SVM)中最核心的是什么?个人理解就是前4个字——“支持向量”,一旦在两类或多累样本集中定位到某些特定的点作为支持向量,就可以依据这些支持向量计算出来分类超平面,再依据超平面对类别进行归类划分就是水到渠成的事了。有必要回顾一下什么是支持向量机中的支持向量。上图中需要对红色和蓝色的两类训练样本进行区分,实现绿线是决策面(超平面),最靠近决策面的2个实心红色样本和1个实心蓝色样本分别是两类
转载 2016-11-02 21:55:00
379阅读
2评论
1 简介基于数据的机器学习就是由观测样本数据得出目前尚不能通过原理分析得到的规律,利用其对未来数据进行预测.神经网络以其优越的函数逼近性能广泛用于建立时间序列过去与未来数据之间某种确定的映射关系,实现预测.首先分析了以经验风险最小化为准则的神经网络的局限性,以及针对此提出的结构风险最小化准则的优点;其次引出支持向量机;最后利用支持向量机对用电数据做较准确的多步预测.​2 部分代码clear&nbs
原创 2022-01-06 22:38:40
764阅读
#include "cv.h" #include "highgui.h" #include "stdafx.h" #include <ml.h> #include <iostream> #include <fstream> #include <string> #include <vector> using namespace cv; u
转载 2016-04-17 19:46:00
187阅读
2评论
前两篇文章写了基于两种特征提取的SVM数字识别这篇文章主要是关于模型评估,即识别数字的正确率 下面代码opencv3  c++加载的XML文件是之前代码训练好的。测试集是我的“”数字检测样本“”文件夹下的0-9个文件夹所包含的检测样本  #include <stdio.h> #include <time.h> #includ
车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤:1) 分割: 检测并检测图像中感兴趣区域;2)特征提取: 对字符图像集中的每个部分进行提取;3)分类: 判断图像快是不是车牌或者 每个车牌字符的分类。 车牌识别分为两个步骤, 车牌检测, 车牌识别, 都属于模式识别。基本结构如下:一、车牌检测  1、车牌局部化(分割车牌区域),根据尺寸等基本信息去除非车牌图像
opencv3.0和2.4的SVM接口有不同,基本可以按照以下的格式来执行: ml::SVM::Params params; params.svmType = ml::SVM::C_SVC; params.kernelType = ml::SVM::POLY; params.gamma = 3; Ptr<ml::SVM> svm = ml::SVM::create(params);
转载 2024-07-26 16:40:13
249阅读
目录HOG是什么?HOG vs SIFTHOG步骤HOG在检测行人中的方式Ope
原创 2022-06-27 23:40:42
845阅读
1评论
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm21.2 SVM案例介绍在使用支持向量机模块时,需要先使用函数cv2.ml.SVM_create()生成用于后续训练的空分类器模型。该函数的语法格式为:svm = cv2.ml.SVM_create( )获取了空分类器svm后,针对该模型使用svm.train()函数对训练数据进行训练,其语法
支持向量机(Support Vector Machine,SVM)是一种用于分类和回归任务的机器学习算法,其目标是找到一个超平面,将不同类别的数据分开。以下是使用Python中的sklearn库实现支持向量机算法的基本示例:from sklearn.datasets import load_iris from sklearn.model_selection import train_test_sp
原创 2023-09-02 22:00:49
512阅读
svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。 opencv中的svm分类代码,来源于libsvm。 结果: 如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多的参数。 由于opencv
转载 2016-11-15 23:57:00
134阅读
2评论
CvSVM 支持矢量机 class CvSVM : public CvStatModel //继承自基类CvStatModel { public: // SVM type enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };//SVC是SVM分类器,SVR是SVM回归 // SVM kernel
原创 2014-03-28 13:45:00
466阅读
  • 1
  • 2
  • 3
  • 4
  • 5