# 使用 OpenCV 和 Python 提取圆形轮廓 在计算机视觉中,图像处理是一个重要的领域,许多应用都依赖于准确地检测和提取形状。OpenCV(Open Source Computer Vision Library)是一个强大的开源计算机视觉库,它提供了丰富的工具和功能,帮助开发者进行图像处理。在这篇文章中,我们将探讨如何使用 OpenCV 和 Python 提取图像中的圆形轮廓。 ##
原创 2024-09-13 04:36:44
407阅读
写在前面Feature scaling,常见的提法有“特征归一化”、“标准化”,是数据预处理中的重要技术,有时甚至决定了算法能不能work以及work得好不好。谈到feature scaling的必要性,最常用的2个例子可能是:特征间的单位(尺度)可能不同,比如身高和体重,比如摄氏度和华氏度,比如房屋面积和房间数,一个特征的变化范围可能是[1000, 10000],另一个特征的变化范围可能是[−
【Python+OpenCV】识别颜色方块并提取轮廓前一阵在做机械臂下井字棋的综合设计,在网上直接购买了一套机械臂装置(包括机械臂,摄像头,树莓派,花费1600元),机械臂不是很高级、精度很低。源码里提供识别红绿蓝三种颜色方块的识别和抓取。经过多次尝试,最终决定井字棋的棋子也采用3cm * 3cm * 3cm的颜色方块。今天就来写一些第一步,而第一步就是解决识别颜色方块的问题。演示效果图手移动方块
转载 2024-01-09 19:19:02
164阅读
opencv中提供findContours()函数来寻找图像中物体的轮廓,并结合drawContours()函数将找到的轮廓绘制出。首先看一下findContours(),opencv中提供了两种定义形式官网:https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e16
转载 2023-09-05 22:12:39
521阅读
实验三 边缘检测算子一、 实验目的 利用opencv或其他工具编写实现下图的sobel算子和robert算子边缘检测二、 实验过程 利用opencv python实现sobel算子和robert算子边缘检测 (1)在python安装opencv库 这个步骤我在第二个实验,图像滤波里写过了,就不再重复了。 (2)编写代码 代码如下:import cv2 import numpy as np im
# 使用Python实现圆形轮廓检测 ## 简介 在计算机视觉领域中,圆形轮廓检测是一种常见的任务,用于检测图像中的圆形对象。在本文中,我将向你介绍如何使用Python实现圆形轮廓检测。我会逐步指导你完成整个过程,并提供相应的代码示例。 ## 流程 以下是实现圆形轮廓检测的整个流程: | 步骤 | 描述 | | --- | --- | | 1 | 读取图像 | | 2 | 图像预处理 |
原创 2024-02-04 05:56:56
277阅读
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。 cv2.findContours(),cv2.drawContours() 什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
转载 2024-02-19 18:51:03
197阅读
一、概述  使用发现并绘制轮廓比较简单,只需要调用findContours和drawContours两个方法就行了,但前提是要对图像做一下预处理。  实现步骤如下:  1.将原图转换为灰度图像  2.执行二值分割  3.去除无用的噪声  4.发现轮廓  5.绘制轮廓  6.展示轮廓图二、示例代码  Mat src = imread(inputImagePath); imshow("原始图"
转载 2023-06-30 23:56:28
421阅读
OpenCV 轮廓基本特征  分类: OpenCV(35)  一、概述       我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
文章目录一、寻找轮廓findContours()1.要层次hierarchy2.不要层次hierarchy3.轮廓就是点集二、绘制轮廓drawContours()三、寻找凸包四、使用多边形1.外部矩形边界boundingRect()2.寻找最小包围矩形minAreaRect()3.寻找最小包围圆形minEnclosingCircle()4.用椭圆拟合二维点集fitEllipse()5.逼近多边形
转载 2024-04-27 10:28:29
974阅读
一、OpenCV中的轮廓 图像的上半部分是一张白色背景上的测试图像,包含了一系列标记 A 到 E的区域。寻找到的轮廓被标记为 cX 或 hX, 其中c 代表 “轮廓(contour)”,h 代表 “孔(hole)”(也可以理解为内轮廓)。 同样,左图是原始图片,右图是寻找到的轮廓,它也采用了类似的标注方法。 二、函数调用细节 寻找轮廓的主要函数是 cv::
转载 2024-08-29 16:09:38
311阅读
目录一、轮廓的绘制的作用二、内容介绍三、代码实现一、轮廓的绘制的作用用于图形分析和处理:轮廓是图像中物体边界的描绘,通过绘制轮廓,我们可以更好地分析和理解图像中的物体和形状。例如,轮廓可用于识别和区分不同的对象、测量物体的面积和周长等。辅助机器视觉和物体识别:轮廓可以帮助计算机视觉系统(如机器人、自动驾驶车辆等)更好地识别和理解其环境。例如,通过轮廓,系统可以识别出不同的人、物体或道路标志。特征提
轮廓特征目标查找轮廓的不同特征,例如面积,周长,重心,边界框等。你会学到很多轮廓相关函数矩   图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。   函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:# -*- coding: utf-8 -*- """ Created on Sun Jan 12 18:30:17 2014
/* Hu轮廓匹配: #include "Opencv_MatchShape.h" #include "Match_Shape_NCC.h" int main(int argc, char* argv) { Opencv_MatchShape demo; demo.MatchShape_HU(); system("pause"); return 0; } */ #include <io
转载 2023-12-14 19:13:44
55阅读
 一、什么是层次结构通常我们使用函数cv.findContours()在图片中查找一个对象。有时对象可能位于不同的位置。还有一些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一副图像中的所有轮廓之间就建立父子关系。  让我们来看一个简单的例子: 在这个图中,我给这几个形状编号为0-5,2和2a分别代表最
转载 2023-11-02 10:42:23
106阅读
OpenCV中的轮廓1.初识轮廓1.1 原理1.2 常用函数2.轮廓的特征2.1 矩2.2 轮廓近似2.3 凸包2.4 边界2.5 拟合2.6 极点3. 形状匹配4. 轮廓的层次结构4.1 轮廓的层级结构4.2 轮廓的检索形式 1.初识轮廓1.1 原理轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。使用二值化图像可以更准确识别轮廓。寻找轮廓之前要进行阈值化处理或C
OpenCV Python 轮廓层次【目标】学习轮廓的层次关系在前几个课程里面,学习了 cv2.findContours() 函数, 传递了参数 Contour Retrieval Mode . 通常是 cv.RETR_LIST or cv.RETR_TREE 工作的很好,但是他们是什么意思呢?hierarchy 到底是什么呢? 在某些情况下,有些形状是在其他形状内部,就像层级一样。我们称上层的为
OpenCV 中的轮廓✏️问:什么是轮廓? ?️答:轮廓是一系列相连的点组成的曲线,代表了物体的基本外形,相对于边缘,轮廓是连续的,边缘并不全部连续。✏️问:如何寻找轮廓? ?️答:寻找轮廓的操作一般用于二值化图,所以通常会使用阈值分割或Canny边缘检测先得到二值图 PS:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一个框。 寻找轮
转载 2023-10-26 13:40:22
152阅读
虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边界的像素,但是它并没有将轮廓作为一个整体进行处理。 函数findContours():可以将这些边缘像素合成轮廓。一个轮廓对应一系列点,这些点以某种方式表示图像中的一条曲线。 1)在opencv中,轮廓用标准模板库(STL)向量vector<>表示; 2)它处理的图像可以是Canny()函数得到的有边缘像素的图像,或者是t
  • 1
  • 2
  • 3
  • 4
  • 5