写在前面Feature scaling,常见的提法有“特征归一化”、“标准化”,是数据预处理中的重要技术,有时甚至决定了算法能不能work以及work得好不好。谈到feature scaling的必要性,最常用的2个例子可能是:特征间的单位(尺度)可能不同,比如身高和体重,比如摄氏度和华氏度,比如房屋面积和房间数,一个特征的变化范围可能是[1000, 10000],另一个特征的变化范围可能是[−
基于python使用OpenCV实现在一张图片中检测圆形,并且根据圆检测结果信息,绘制 标记出圆的边界和圆心。1 HoughCircles 霍夫圆检测函数在Opencv中使用HoughCircles函数可以实现圆的检测,具体函数参数如下: image: 输入图像,8位灰度单通道图像method: 检测圆的方法,目前OpenCV中有HOUGH_GRADIENT和HOUGH_G
写在题前:这篇文章磨磨蹭蹭了好久,曾经两次接近完稿而丢失。我想任何事情在起步时都会有类似的囧境,还好我还有恒心继续下去。 摄像头标定的目的有两个。第一,要还原摄像头成像的物体在真实世界的位置就需要知道世界中的物体到计算机图像平面是如何变换的,摄像头标定的目的之一就是为了搞清楚这种变换关系,求解内外参数矩阵。第二,针孔摄像头的发明使得摄像头变成了亲民物品,大行于世,但是针孔摄像头有个很大的问题——畸
如何编写高精度的相机标定程序?熟悉机器视觉的朋友肯定都接触过相机标定,目前有各种各样的途径来完成相机标定,其中开源的有opencv和matlab;商业软件有VisionPro,Halcon。opencv和matlab中比较常用的标定图案是棋盘格标定,Halcon中使用的是网格圆,其中由于圆形图案的提取精度高于棋盘格,因此,许多高精度的相机标定软件都是使用的是圆/圆环作为标定图案。因此,如何使用圆
1. ChArUco 介绍(Detection of ChArUco Corners)Chessboard具有高的交点精度,但是交点提取比较困难。ArUco能够快速检测,但即使使用亚像素精度提取,提取的交点精度也不甚理想。ChArUco集成了Chessboard的高精度与ArUco易用性的优点。使用ArUco的特征插值出棋盘格黑白块的内角点2. ChArUco 创建charuco_board =
转载 2024-08-29 17:11:06
1029阅读
第七章 采用AAM和POSIT的3D头部姿态估计——Chapter 7:3D Head Pose Estimation Using AAM and POSIT 一个好的计算机视觉算法如果没有伟大健壮的功能以及广泛的普遍化和一个坚实的数学基础是不完整的。所有的这些优点伴随着主要由TimCootes开发的主动表观模型(Active Appearance Model
转载 9月前
136阅读
由于在显微镜以及投影仪下,棋盘格角点提取会非常不准确,因此必须采用圆形阵列标定进行标定opencv里本身提供了圆形阵列标定版的接口,然而在显微镜以及投影仪下却提取不到,因为标定很小(显微镜下才6mm*6mm)经过放大,圆变形很严重,因此这里通过另外的方法求取。在显微镜视场中,前景与背景区别很大,直接固定阈值128得到二值图即可,在二值图中检测所有轮廓,对得到的轮廓做一个筛选,首先是轮廓周长(
1. 使用OpenCV进行标定相机已经有很长一段历史了。但是,伴随着20世纪后期的廉价针孔照相机的问世,它们已经变成我们日常生活的一种常见的存在。不幸的是,这种廉价是由代价的:显著的变形。幸运的是,这些是常数而且使用标定和一些重绘我们可以矫正这个。而且,使用标定你还可以确定照相机的像素和真实世界的坐标单位毫米之间关系。原理:对于变形(镜头畸变),OpenCV考虑径向畸变和切向畸变。对于径向畸变参数
转载 2023-10-31 16:57:03
130阅读
文章目录简介代码HoughCircles函数说明 简介opencv中提供了基于霍夫变换的圆形检测方法,可实现下图所示的检测结果。其中,【gray】是经过均值滤波的灰度图,其目的是将目标边缘凸显出来;【edge】是通过Canny边缘检测得到的灰度图像的边缘;【circles】即原始图像和检测到的圆形的叠加图。代码其实现代码如下。import matplotlib.pyplot as plt imp
一、什么是照相机标定在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。二、张正友相机标定法张正友标定是指张正友教授1998年提出的单平面棋盘格的摄像机标定方法。本文中提出的方法介于传统标
本文着重阐述以下问题: halcon是否只能使用halcon专用的标定?halcon标定如何生成?halcon标定如何摆放,拍照数量有无限制?halcon是否只能使用halcon专用的标定? halcon提供了简便、精准的标定算子并且提供了标定助手,这无疑大大方便了广大开发者。在halcon中有两种方式可以进行标定:如halcon自带例程中出现的,用halcon定义的标
Camera Calibration1.OpenCV Camera CalibrationOpenCV提供具体的标定策略和说明文档,可以直接使用,说明文档的位置"D:\opencv\sources\doc\tutorials\calib3d\camera_calibration";例程的位置“D:\opencv\sources\samples\cpp\camera_calibration.cpp”
转载 2024-05-24 06:10:44
189阅读
    OpenCV库自带了一个可以用于相机标定的功能,不仅可以标定最常见的棋盘格标定,还可以用于Halcon常用的圆点阵列标定。    以下对如何使用该自带例程进行相机标定进行一个简要的介绍,也算是对之前工作的一个总结。            
实验三 边缘检测算子一、 实验目的 利用opencv或其他工具编写实现下图的sobel算子和robert算子边缘检测二、 实验过程 利用opencv python实现sobel算子和robert算子边缘检测 (1)在python安装opencv库 这个步骤我在第二个实验,图像滤波里写过了,就不再重复了。 (2)编写代码 代码如下:import cv2 import numpy as np im
OpenCV的Sample分析:相机标定(3)在找到标定之后,会进行如下的操作,if ( found) // If done with success, { // improve the found corners' coordinate accuracy for chessboard if
# 相机圆形标定与Python 相机标定是计算机视觉领域中的一个重要概念,它涉及到通过拍摄特定图案来识别相机内部参数(如焦距、光心)以及畸变系数。本文将介绍如何利用Python和相机圆形标定进行标定,并通过相关的代码示例及图表进一步解释说明。 ## 1. 相机标定的基本概念 相机标定的目的是为了准确地将三维空间中的点映射到二维图像上。相机模型常常受到透视投影和镜头畸变的影响,因此我们需要
# 如何实现“Python CV 圆形标定” ## 一、流程概述 首先,我们需要明确整个实现的流程,然后分步指导小白如何操作。下面是实现“Python CV 圆形标定”的步骤表格: | 步骤 | 操作 | | :---: | :--- | | 1 | 导入所需库 | | 2 | 生成圆形标定 | | 3 | 定义标定中的圆心和半径 | | 4 | 在标定上绘制圆形 | | 5 | 显
原创 2024-05-04 05:54:08
133阅读
  标定的选择,有CharuCo,棋盘格,不对称的圆和棋盘格。标定尺寸在选择标定时,一个重要的考虑因素是它的物理尺寸。这最终关系到最终应用的测量视场(FOV)。这是因为相机需要聚焦在特定的距离上标定。改变焦距长度会轻微地影响对焦距离,这会影响之前的标定。即使是光圈的改变通常也会对标定的有效性产生负面影响,这就是为什么要避免改动它们。为了精确的标定,当摄像机看到标定目标填充
转载 2024-07-30 13:47:35
93阅读
手势识别系列文章目录手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。1.  opencv实现手部追踪(定位手部关键点)2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)3.手势识别-手势音量控制(opencv)4.opencv实战项目 手势识别-手势控制鼠标未完待续本专栏记录作者的学习之旅会一直更新下去,欢迎订阅一起
简介提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、相机标定简介二、张友正黑白棋盘标定1.思想2.原理3.模型求解三、实验内容及过程3.1 实验要求3.2 实验数据及环境1.实验数据2.实验环境3.3 实现代码3.4 实验结果四、总结 前言摄像机标定简单来说是从世界坐标系转换为相机坐标系,再由相机坐标系转换为图像坐标系的过程,也就是求最终的投影矩阵P的过程 相机标
  • 1
  • 2
  • 3
  • 4
  • 5