机器学习--聚类一、无监督学习二、KMeans聚类2.1 概览2.2 理论介绍2.2.1 模型2.2.2 策略2.2.3 算法2.3 案例讲解2.4 Python实现2.4.1 导入数据处理相关库以及读取数据2.4.2 查看相关数据并进行可视化展示2.4.3 导入sklearn并训练模型2.4.4 评估模型三、常用的其他聚类算法3.1 均值漂移聚类(Meanshift)3.2 DBSCAN算法(
机器学习练习 7 - K-means实现K-means聚类,并使用它来压缩图像。 我们将从一个简单的2D数据集开始,以了解K-means是如何工作的,然后我们将其应用于图像压缩。 我们还将对主成分分析进行实验,并了解如何使用它来找到面部图像的低维表示。kmeans实施和应用K-means到一个简单的二维数据集,以获得一些直观的工作原理。 K-means是一个迭代的,无监督的聚类算法,将类似的实例组
kmeans为无监督聚类最重要的算法,本文用kmeans算法对图像进行分割。算法原理参考:以上文章对Kmeans解释得很清楚,这里我主要说一下实例代码。核心思想:kmeans以k为参数,把样本分为k个族(对于图像,每个像素点灰度值就是样本),使族内具有较高的相似度,而族与族之间相似度较低。核心步骤:假如要分为2类,则一:随机定义2个中心点,P1与P2。 并且P1代表A族,P2代表B族。二:所有像素
一、理论准备1.1、图像分割图像分割是图像处理中的一种方法,图像分割是指将一幅图像分解成若干互不相交区域的集合,其实质可以看成是一种像素的聚类过程。通常使用到的图像分割的方法可以分为:基于边缘的技术基于区域的技术基于聚类算法的图像分割属于基于区域的技术。1.2、K-Means算法K-Means算法是基于距离相似性的聚类算法,通过比较样本之间的相似性,将形式的样本划分到同一个类别中,K-Means算
聚类(Clustering)指的是一种学习方式,即把物理或抽象对象的集合分组为由彼此类似的对象组成的多个类的分析过程。注:本文中用到的Python及其模块安装教程参见#K-Means算法在聚类中K-Means算法是很常用的一个算法,也是基于向量距离来做聚类。算法步骤如下:从n个向量对象中选择任意k个向量作为初始聚类中心。根据在步骤1中设置的k个向量(中心对象向量),计算每个对象与这k个中心对象各自
我将TFIDF应用于文本文档,其中我得到不同长度的n维向量,每个向量对应于一个文档。texts = [[token for token in text if frequency[token] > 1] for text in texts] dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for
在图像分割中,使用 kmeans 算法可以实现图像区域基本分割。如果一幅图像被分为两类,kmeans 分割效果与 ostu 算法基本一致,具体如下图: kmeans 将图像灰度聚类为 k 类,ostu 将图像灰度分割为 2 类,当 k = 2 时,两种算法最终目的基本趋于一致。 kmeans 算法基
原创 2022-01-13 16:22:26
1258阅读
1、问题导入假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置。事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的“某个地址”,然后步行到每个组内的地址。那么,如何确定这些组,如何确定这些组的“某个地址”?答案就是聚类。而本文所提供的k-means聚类分析方法就可以用
算法简述K-means 算法原理我们假定给定数据样本 X ,包含了 n 个对象 ,其中每一个对象都具有 m 个维度的属性。而 K-means 算法的目标就是将 n 个对象依据对象间的相似性聚集到指定的 k 个类簇中,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中。对于 K-means 算法,首先需要初始化 k 个聚类中心 , 然后通过计算每一个对象到每一个聚类中心的欧式距离,如下式
原帖地址:1.基本Kmeans算法[1]选择K个点作为初始质心  repeat      将每个点指派到最近的质心,形成K个簇      重新计算每个簇的质心  until 簇不发生变化或达到最大迭代次数时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数(采样数),n为维数空间
转载 2024-04-25 05:08:38
34阅读
以上包括了高斯混合模型的原理,公式推导过程,完整的代码实现,以及高斯概率密度公式的例子解析。 02—二维高斯分布聚类数据生成在此不再将完整的代码黏贴上,有需要的请参考上个推送或者在微信或QQ群中和我要Jupyter NoteBook的实现代码。下面仍然借助sklearn的高斯分布的数据簇生成功能,注意参数n_features的含义是生成2维(2个特征)的数据集。 x,label = 
一、 KMeans方法概述1. 无监督学习方法(不需要人为的干预)2. 分类问题,输入分类数目,初始化中心位置3. 硬分类方法,以距离度量 (    硬分类:以距离为度量,距离离哪个中心点越近,他就被标记为哪个分类的编号;     以距离度量:计算两个点之间的距离,如平面上x,y;空间上x,y,z;对RGB图像来说就是R、G、B三个通道,
1. k-means算法思想k-means算法中文名叫做k均值。它是一种非监督聚类算法,如有一堆数据,但是知道这些数据有k个类,具体每一个数据点所属分类不知道。此时就需要用k-means聚类算法,它可以把原先的数据分成k个部分,相似的数据就聚在一起。2. k-means算法步骤共有3个步骤:初始化–随机生成K个初始“均值”(质心);分配–通过将每个观测值与最近的质心相关联来创建K个聚类,遍历所有点
** K-means算法-JAVA实现 ** 从D中随机取k个元素,作为k个簇的各自的中心。 分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。 根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。 将D中全部元素按照新的中心重新聚类。 重复第4步,直到聚类结果不再变化。 将结果输出。** 一.编程实现 %% Kmeans算法
转载 2024-05-08 20:18:52
73阅读
十大算法 —— K均值聚类1、基本介绍(1)概述:K-均值聚类是一种动态聚类的方法。其主要适用于分类问题。该算法给出一组对象(记录),聚类或分类的目标是把这些对象分割成组或集群,使得这些对象相比于组间,在组内更趋于相似。K-均值聚类是一种无监督学习的方法,因为不需要事先标记的数据。K-均值算法在实践中容易实施和运行,速度相对较快,算法内容也非常容易修改。(2)优点[1][2][3](3)缺点[1]
在进一步讨论如何在有限空间内实现多维分析的预汇总之前,我们有必要再了解一下预汇总方案还有什么功能上的不足,也就是要搞清还有什么查询需求很可能无法通过预汇总数据获取。1. 非常规聚合预汇总方案是将测度聚合值先计算好并存储起来,那么,显然,在预汇总阶段没有想到的测度聚合值就无法直接从预总汇的数据中查询出来了。比如,如果我们只存储了销售额的合计值,而没有存储最大值,那就无法直接查询出来了。SQL 提供了
关于K聚类,我曾经在一篇博客中提到过,这里简单的做个回顾。KMeans的步骤以及其他的聚类算法  K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算  其他聚类算法:二分K-均值  讲解一下步骤,其实就是说明一下伪代码随机选择k个点作为起始质心 当任意一个点的簇分配结果发生改变时 对数据集中的每个数据点
转载 2023-09-27 17:29:48
66阅读
0 前言? 优质竞赛项目系列,今天要分享的是? opencv python 深度学习垃圾分类系统?学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分这是一个较为新颖的竞赛课题方向,学长非常推荐!? 更多资料, 项目分享:https://gitee.com/dancheng-senior/postgraduate课题简介如今,垃圾分类已成为社会热点话题。其实在2019年
Kmeans算法流程从数据中随机抽取k个点作为初始聚类的中心,由这个中心代表各个聚类 计算数据中所有的点到这k个点的距离,将点归到离其最近的聚类里 调整聚类中心,即将聚类的中心移动到聚类的几何中心(即平均值)处,也就是k-means中的mean的含义 重复第2步直到聚类的中心不再移动,此时算法收敛 最后kmeans算法时间、空间复杂度是: 时间复杂度:上限为O(tKmn),下限为Ω(Kmn)其中,
转载 2024-07-16 11:24:28
100阅读
      k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。  &nbsp
  • 1
  • 2
  • 3
  • 4
  • 5