上个随笔讲了在windows 上安装 caffe,并且 跑mnist 这个例程的过程,说真的,就像奶妈一样,每一步都得给奶才干活。最近配置了一台台式机,可以作为以后自己配置学习机的参考。配置如下:补图。 电脑概览电脑型号 兼容机操作系统 Ubuntu 16.04 LTSCPU AMD Ryzen 7 1700X Eight-Core Processor(3400 MHz)主板 华硕 RO
转载
2024-04-17 11:16:51
166阅读
如果你想提高电脑开机和运行的速度,最直接和标本兼治的方法就是加物理内存。倘若你有幸拥有一台有着4G内存的电脑,那你工作学习的心情一定是心旷神怡的。除此之外,如果你稀罕自己囊中的“大米”,不愿给自己的机器剖腹加RAM,那么,你可以试试下面六种方法:
一:尽量删除桌面文件
每次Mac启动都要对桌面的内容进行索引,为桌面每个文件建立缩略图标(thumbn
转载
2024-08-18 10:26:50
480阅读
这是一篇简单介绍在Mac利用最新M1处理器回事TensorFlow模型训练的文章,作者应该是google的人,但文章中引用的 github 仓库来自苹果公司。
原文链接: https://
blog.tensorflow.org/202
0/11/accelerating-tensorflow-performance-on-mac.html
转载
2024-05-28 10:38:14
321阅读
【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型C++版本OpenCV_GPUWindows平台编译安装Open
转载
2024-07-28 17:32:51
172阅读
【计算机视觉】关于OpenCV中GPU配置编译的相关事项标签(空格分隔): 【计算机视觉】前一段发现了OpenCV中关于GPU以及opencl的相关知识,打算升级一下对OpenCV的使用,但是发现从OpenCV官网上下载的都是没有WITH_CUDA这一选项的。于是必须进行OpenCV带CUDA的重编译!下面就记录这一阶段出现的一系列问题。关于OpenCV版本的问题 起初直接尝试使用一直用的Open
转载
2024-05-14 07:18:03
141阅读
1、 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce 8400 GS;2、 从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安装;3、 从https://developer.nvidia.com/cuda-toolkit根据本机类型下载相应最新版的CU
转载
2024-03-08 09:11:06
181阅读
目录一、一些概念及说明二、设备信息函数一、一些概念及说明1、主机端(Host端)、设备端(Device端、GPU端)在CUDA中,有主机端和设备端这两个概念,主机端是指CPU+内存,设备端是指GPU+显存。主机端的代码在CPU上执行,访问主机内存;设备端代码在GPU上执行,访问显存。在使用GPU计算时,需要在主机内存好显存之间来回拷贝数据;当然,一些新技术可以不用拷贝数据,请参考后面的章节或者CU
转载
2024-04-05 22:29:30
530阅读
背景在文章编译安装LitmusRT遇到的问题中,我们已经编译安装了实时操作系统LitmusRT,并且能够正常启动它。现在,我们得编译安装一下GPU加速的第三方库OpenCL或OpenACC。这里再次注意不要用虚拟机安装英伟达驱动,因为虚拟机的显卡是虚拟出来的,加载不了英伟达的ko文件。所以我使用的是实验室的ubuntu16.04 64位台式机,此台式机已经装好了英伟达驱动、cuda10.2和10.
转载
2024-05-07 13:37:56
430阅读
学习目标理解算法的原理,能够使用进行关键点的检测SIFT/SURF算法1.1 SIFT原理前面两节我们介绍了和角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。 所以,下面我们来介绍一种计算机视觉的算法,尺度不变特征转换即。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其
转载
2024-08-23 17:58:30
268阅读
使用GPU加速要看在什么平台上使用,目前VS中是直接可以将函数指定在GPU上运行,但是要注意使用的场合,并不是什么情况下使用GPU都可以加速,GPU是因为使用了显存,而显存是比内存大很多的,所以可以同时对很多数据进行处理,所以才能提高处理速度,但其实它的计算频率并不比内存上高,所以可以看出GPU能够加速的原理是:大容量并行计算(可能形容得不到位…..)。但是如果只对一个数据进行反复计算,这时候GP
转载
2023-10-17 20:06:00
420阅读
2020发生了太多事,在新冠疫情的影响下芯片和半导体产业也发生了很多翻天覆地的变化。在闲来无事时,博主整理的一下芯片半导体产业2020年的巨变,最后也是画了一把信仰尺来记下这一年的岁月。英伟达的信仰尺,图源淘宝1、苹果PC平台M1芯片 11月11日凌晨,苹果在其总部Apple Park发布了旗下首款自研PC平台基于Arm架构的芯片——M1,同时,也发布了搭载M1的最新MacBook Air。M1芯
转载
2024-05-26 14:36:58
50阅读
CC BY-NC-SA 3.0协议安装教程写本帖的主要目的其实在于此段,拿到Gaming Box后,安装的过程十分的曲折,上网查资料发现使用技嘉这款外接显卡盒的人并不是很多,买来用在MacBook上的又更少了。官方给的教程说实话并不实用,上网找教程却又找不到合适的,所以把自己的经验写出来,希望能帮到一些人。 机器详情: MacBook Pro with Touch Bar (13-inch,201
转载
2024-03-25 13:32:55
366阅读
网上教程挺多的的,我也是参考网上教程编译成功的,现在把我编译的过程发出来。 目的:使用opencv中的cuda加速函数。例如:frame1_gray = cv.cuda_GpuMat(image1)
frame2_gray = cv.cuda_GpuMat(image2)
opticalFlowGPU = cv.cuda_FarnebackOpticalFlow.create(3,0.5,Fals
转载
2024-02-10 07:39:18
329阅读
重磅干货,第一时间送达import cv2 as cv
gpu_frame = cv.cuda_GpuMat()
screenshot = cv.imread('media/drip.png')
gpu_frame.upload(screenshot)
gpu_frame.download() 概述在单张图像上使用在多张图像上使用对多张图像使用Dask进行并行延时处理在单张图像上使用我们
转载
2024-04-02 08:03:49
502阅读
OpenCV4 + CUDA 从配置到代码.....引子一直有人在研习社问我,怎么去做OpenCV + CUDA的加速支持。其实网上用搜索引擎就可以找到一堆文章,但是其实你会发现,按照他们的做法基本都不会成功,原因是因为文章中使用的OpenCV版本太老旧、英伟达GPU的CUDA库也太久远。其实这个都不是主要原因,真实原因是OpenCV4跟之前的版本,编译CUDA的方法不一样了。所以感觉有
转载
2024-02-21 14:11:51
111阅读
OpenCV中配置CUDA,实现GPU加速按语:首先感谢博主的方法,在这个基础上编译之后发现了很多问题,所以进行了改正,有了以下方法:1、 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce GT630;2、 从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安
转载
2024-01-09 15:42:54
186阅读
如果您使用OpenCV已有一段时间,那么您应该已经注意到,在大多数情况下,OpenCV都使用CPU,这并不总能保证您所需的性能。为了解决这个问题,OpenCV在2010年增加了一个新模块,该模块使用CUDA提供GPU加速。您可以在下面找到一个展示GPU模块优势的基准测试:简单列举下本文要交代的几个事情:概述已经支持CUDA的OpenCV模块。看一下cv :: gpu :: GpuMat(cv2.c
转载
2024-02-21 10:52:39
626阅读
写在前面:一直想尝试一下opencv GPU模块,无奈以前电脑配置的ATI的显卡,最近换了一台联想的D20工作站,虽然性能不比最近发布的D30,但还算是有了可以尝试cuda的平台。没想到刚开始还是遇到不少问题。首先遇到的就是重新编译支持GPU模块的opencv版本,由于这里写的是回忆,可能有些不太详尽,还望看到这篇博文的朋友能够补充。一、安装篇:安装部分分为cuda安装和opencv编译。1.1、
转载
2024-02-27 21:32:26
50阅读
# 实现Python的Mac GPU
## 简介
在本篇文章中,我将向你介绍如何在Mac上使用GPU来实现Python的开发。我们将分步骤进行,并提供每个步骤所需的代码和解释。让我们开始吧!
## 流程图
```mermaid
flowchart TD
A[开始] --> B[安装CUDA]
B --> C[安装cuDNN]
C --> D[安装TensorFlow
原创
2023-11-23 11:26:05
239阅读
此前有Mac用户反馈,设备通过Bootcamp安装并运行Windows 10时,右侧屏幕会出现变形并闪烁,如果使用外接显示器,则显示问题可能会影响整个屏幕。日前苹果发布了新的支持文档,其中分享了一些方法用于解决Windows 10用户在Mac设备上遇到的问题,包括更新AMD显卡驱动以及调整分辨率等。首先是更新显卡驱动,方法适用于以下机型:2015 年或之后推出的 15 英寸MacBook Pro2