最近开始做行人检测,因此开始接触faster-rcnn,这里贴上配置教程(亲测可行),不过是基于cpu的,蓝瘦。。。参考博客:http://www.tuicool.com/articles/nYJrYra(opencv配置)(faster-rcnn配置)环境:ubuntu16.04一、首先要配置好opencv这里我是在opencv官网上下载了opencv-3.0.0-rc1(版本最好3.0.0以上
转载
2024-08-22 11:44:05
45阅读
一,前言本人是机械专业在读硕士,在完成暑假实践的时候接触到了人脸识别,对这一实现很感兴趣,所以花了大概十天时间做出了自己的人脸识别。这篇文章应该是很详细的了所以帮你实现人脸识别应该没什么问题。先说本博文的最终要达到的效果:通过一系列操作,在摄像头的视频流中识别特定人的人脸,并且予以标记。本人通过网上资料的查询发现这类人脸识别,大多参考了一位日本程序员小哥的文章。链接:https://github.
转载
2024-05-20 06:45:42
152阅读
一、opencv的示例模型文件opencv4.0.0中暂未提供cpp代码,使用python代码改编,参考https://github.com/opencv/opencv/blob/master/samples/dnn/mask_rcnn.py,我们使用的模型为 mask_rcnn_inception_v2_coco_2018_01_28.pb,选择InceptionV2是因为其速度更快,其他更好效
转载
2024-02-29 16:31:27
209阅读
本文主要介绍OpenCV的DNN模块的使用。OpenCV的DNN模块自从contrib仓库开始,就是只支持推理,不支持训练。但是仅仅只是推理方面,也够强大了。现在OpenCV已经支持TensorFlow、Pytorch/Torch、Caffe、DarkNet等模型的读取。本文们就以风格迁移为例,来看一下OpenCV DNN模块的用法。相比于复杂而耗时的模型训练过程,模型推理就显得简单多了。简单来
转载
2024-02-13 21:56:51
169阅读
OpenCV是学习计算机视觉的重要工具之一,然而多年以来,在深度学习的deBuff下,OpenCV给人一种与时代脱节,只有传统的视觉解决方案的一种错觉。实际上,OpenCV每次更新都会结合学术领域前沿的成熟算法。在OpenCV 4更新之后,更是将深度学习作为主要的更新内容。但是OpenCV还是给人一种传统的感觉。实际上,这是我们并没有真正了解OpenCV。在OpenCV中有一个名为opencv_c
很粗糙的跳读了一下learning opencv这本书,网上说是入门的,可看到后面根本没法看下去了,都是公式,就写一下一些笔记吧:(1)当你看到CvArr*时,你可以用IplImage*参数传入 (2)CvCapture结构包含从摄像机或视频文件中读取帧所需的信息,根据视频来源,使用下面两个函数之一来初始化CvCapture结构CvCapture * cvCreateFileCapture(con
转载
2024-03-17 00:30:10
15阅读
CNN实现手写数字识别导入模块和数据集import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
(x_train,y_train),(x
目录序判断情绪效果CNN分类训练原理正文一、利用机器学习模型训练和检测笑脸二、 扩展 序判断情绪效果CNN分类训练原理 训练测试多角度-多层次训练
人脸数据集
提取特征点
提取特征点
CNN分类
预测
转载
2024-03-14 09:24:57
56阅读
基本概念SURF(SpeededUp Robust Features)—加速稳健特征算法, 在2006 年由Bay.H和Van Gool.L共同提出, SURF是尺度不变特征变换SIFT的加速版。一般来说, 标准的SURF算子比SIFT算子快好几倍, 并且在多幅图像下具有更好的稳定性。SURF最大的特征在于采用了harr特征以及积分图像的概念, 这大大加快了程序运行时间,可以应用于物体识别以及三维
OpenCV和DNN结合实现人脸检测本人在工作之余,做了一个小功能,在动手之前阅读了不少文档,从而实现人脸检测功能,做这个目的有二,一方面是出于爱好,另一方面是提高自身编码能力。1.下面是程序的流程图 实现步骤: A) 首先需要先加载DNN模型文件,用深度学习DNN模型检测出人脸区域并进行裁剪,见下图,然后用opencv裁剪出人脸部分; B) 然后把人脸图像转换位灰度图,通过HSV模型计算出二值图
转载
2023-08-17 09:08:47
185阅读
一、项目简介OpenCV是一个用于图像处理、分析、机器视觉方面的开源工具包。无论科学研究,还是商业应用,OpenCV都是进行图像识别的不二之选。熟练掌握OpenCV的图片识别能力,在图片识别领域里飞起来不是梦!本文利用kaggle数据库上的水果图片数据集(fruit-images-for-object-detection)展示如何训练机器学习模型识别水果图片的类别。数据地址(kaggle数据库地址
转载
2024-01-29 02:50:07
131阅读
在本教程中,我们将讨论深度学习应用于人脸的一个有趣应用。我们将估计年龄并从单个图像中找出人的性别。我们将简要讨论本文的主要思想,并提供有关如何在 OpenCV 中使用该模型的分步说明。我们将使用 OpenCV 学习性别和年龄分类。1. 使用 CNN 进行性别和年龄分类作者使用了一个非常简单的卷积神经网络架构,类似于CaffeNet和AlexNet。该网络使用3个卷积层,2个完全连接层和一个最终输出
转载
2024-09-03 21:52:47
39阅读
OpenCV 入门系列:OpenCV 入门(一)—— OpenCV 基础OpenCV 入门(二)—— 车牌定位OpenCV 入门(三)—— 车牌筛选OpenCV 入门(四)—— 车牌号识别OpenCV 入门(五)—— 人脸识别模型训练与 Windows 下的人脸识别OpenCV 入门(六)—— Android 下的人脸识别OpenCV 入门(七)—— 身份证识别本篇我们来介绍在 Android 下
转载
2024-06-17 23:11:29
115阅读
在Windows下安装好opencv2.4.9之后,在"xxx/build/x64/vc10/bin"下有训练中要用到的可执行程序opencv_xxxx.exe等四个可执行程序。注意,由于本人为win7 64bits系统,安装了VS2010,故使用该目录下的可执行程序。 当使用自带程序进行人脸检测训练时,遇到一些问题,整理如下:1.
转载
2024-05-06 23:23:38
27阅读
计算机视觉领域自20世纪60年代末就已经存在。图像分类和目标检测是计算机视觉领域的一些最古老的问题,研究人员已经努力解决了几十年。使用神经网络和深度学习,我们已经达到了一个阶段,计算机可以开始真正地理解和识别一个物体,并具有很高的准确性,甚至在许多情况下超过了人类。要学习神经网络和计算机视觉的深度学习,OpenCV的DNN模块是一个很好的起点。由于其高度优化的CPU性能,初学者也可以很容易地开始
转载
2024-05-25 21:13:06
392阅读
《月令七十二候集解》:“二月中,分者半也,此当九十日之半,故谓之分。秋同义。”《春秋繁露·阴阳出入上下篇》说:“春分者,阴阳相半也,故昼夜均而寒暑平。”今天我们不说计算机视觉基础知识,接下来说说AAAI2019一篇比较新颖的Paper,其是中科院自动化所和京东AI研究院联合的结果,在Wider Face数据集中达到了较高的水准,比arxiv2019_VIM-FD的更好一些。今天要说的就是“Impr
由于项目需要,翻译了一部分可以用于我现在项目的opencv函数,记录于此,原始英文文档来自于。getCudaEnableDeviceCount:返回已安装CUDA设备的数量; 2. setDevice:设置adevice并为当前线程初始化它; 3. getDevice:返回当前设备索引设置或默认初始化; 4. resetDevice:在当前进程中显式地销毁和清除与当前设备相关联的所有资源;
转载
2024-06-24 18:03:26
245阅读
一、图像的基本操作(1)读取图像Img = cv2.imread("xx.jpg")img的数据类型为ndarray的格式(2)图像显示可以多次调用,创建多个窗口cv2.imshow("image",img)(3)等待时间毫秒级,0表示任意键终止,如数字10000表示10秒后自动关闭cv2.waitKey(0)
cv2.destroyAllWindows()(4)图片的属性img.shape(41
转载
2023-12-21 06:02:42
264阅读
在知乎上看到一个有趣的专栏,讲的是国外(日本?)一个牛人用OpenCV+CNN实现了一个人脸识别工具,觉得挺好玩的,所
转载
2024-04-01 14:01:27
327阅读
图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。1.直方图拉伸 就
转载
2024-08-29 22:07:50
26阅读