今天,总结一下如何使用层次聚类算法里面的自定义距离度量层次聚类上次已经总结过。 这次仅仅说明层次聚类的距离参数,这里的距离参数可以使用自定义函数。 我们进入该函数的文档页面我们看到linkage的说明文档上面的函数scipy.cluster.hierarchy.linkage(y, method='single', metric='euclidean',optimal_ordering=False
转载
2023-08-24 02:56:28
73阅读
聚类分析(层次聚类分析(Q型聚类和R型聚类)、快速聚类分析)聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。 聚类分析的特点:聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。1.层次聚类分析
转载
2023-08-14 06:51:50
89阅读
MFC浅谈层次聚类算法写文章的起因所用数据集及预处理划分簇的基础思维和结果开发中遇到的一些问题及算法优化预测错误率的算法写在后面的话 写文章的起因本人是一名大二的学生,原本对于人工智能方面的算法就有一定的兴趣,正巧碰上期末课设需要用到层次聚类来完成课设,就顺水推舟,用C++(准确来说是MFC)完成了层次聚类算法的课设,之所以没用python一方面是了解不够另一方面是为了照顾队友吧,然后深刻体会到
转载
2023-12-09 13:11:15
67阅读
引言最近在读西瓜书,查阅了多方资料,恶补了数值代数、统计概率和线代,总算是勉强看懂了西瓜书中的公式推导。但是知道了公式以后还是要学会应用的,几经摸索发现python下的sklearn包把机器学习中经典的算法都封装好了,因此,打算写几篇博客记录一下sklearn包下的常用学习算法的使用,防止自己以后忘了,嘿嘿。1.聚类西瓜书中197页对“聚类”做了详细的解释,以下为摘录:在无监督学习中,训练样本的标
转载
2023-08-24 13:39:28
219阅读
在n个数据点中选择最近的两个,并把它们合成一个 回到第一步,直到只剩1个数据点
转载
2021-01-01 15:16:00
224阅读
2评论
样本空间有$N$个点${x_1,x_2,...,x_n}$,层次聚类的过程如下:1、将每个点都单独归为1类2、计算各个类之间的相似度/距离3、将相似度最大/...
原创
2022-11-02 09:50:47
66阅读
1. 层次聚类 层次聚类算法与之前所讲的顺序聚类有很大不同,它不再产生单一聚类,而是产生一个聚类层次。说白了就是一棵层次树。介绍层次聚类之前,要先介绍一个概念——嵌套聚类。讲的简单点,聚类的嵌套与程序的嵌套一样,一个聚类中R1包含了另一个R2,那这就是R2嵌套在R1中,或者说是R1嵌套了R2。具体说怎么算嵌套呢1,x2,...
原创
2023-11-07 11:28:22
102阅读
聚类(Clustering)是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。也即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法。K-means算法k-means是划分方法中较经典的聚类
转载
2024-05-21 12:05:26
74阅读
Hierarchicalclustering 层次聚类《机器学习》—周志华1、什么是层次聚类2、层次聚类的距离运算方式3、伪代码4、代码+结果5、数据1、层次聚类是试图在不同层次对数据集进行划分,从而形成树形的聚类结构,数据集的划分可分为采用“自底向上”的聚类策略,也可采用“自顶向下”的分拆策略。说白了就是一开始就把所有的样例作为一个簇,然后计算分别计算两个簇的距离
原创
2022-11-18 18:32:50
168阅读
前言K-means 聚类,介绍了 K-means 算法以及一些优化改进的算法,通过此了解聚类分析,接下来我们进一步的介绍聚类分析的其他方法。本篇代码可见:Github一、层次聚类\quad\quad 层次聚类技术是第二类重要的聚类方法。层次聚类方法对给定的数据集进行层次的分解,直到满足某种条件为止,传统的层次聚类算法主要分为两大类算法:凝聚的层次聚类:AGNES算法(AGglomerative N
转载
2023-08-15 14:48:49
564阅读
09 聚类算法 - 层次聚类需求: 基于scikit的API创建模拟数据,使用BIRCH算法对数据进行聚类操作,并比较n_clusters参数的作用。相关API:https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html参数threshold: 代表了FC-Tree中的参数T。叶子节点中每个CF的最大半径
转载
2024-08-23 16:46:12
48阅读
今天这篇文章写一下层次聚类,这也是除了k-means之外较为常用的另一种聚类方法。 假设有N个待聚类的样本,对于层次聚类来说,步骤: 1.(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度 2.寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了一个); 3.重新计算新生成的这个类与各个旧类的相似度; 4.重复2和3直到所有样本点归为一类,结束 比如在以上
转载
2024-05-16 10:21:42
221阅读
目录1.作者介绍2.层次聚类算法介绍2.1 层次聚类算法原理2.2 层次聚类算法步骤2.3 层次聚类算法分类3.层次聚类算法实现(代码如下)3.1 相关包导入3.2 生成测试数据集3.3 层次聚类实现&画出树状图3.4 获取聚类结果3.5完整代码3.6 对比不同方法聚类效果4.参考链接 1.作者介绍杨金花,女,西安工程大学电子信息学院,21级硕士研究生 研究方向:基于学习方法的运动目标检
转载
2023-06-13 21:30:51
285阅读
一 原理基本工作原理 给定要聚类的N的对象以及N*N的距离矩阵(或者是相似性矩阵), 层次式聚类方法的基本步骤(参看S.C. Johnson in 1967)如下: 1. 将每个对象归为一类, 共得到N类, 每类仅包含一个对象. 类与类之间的距离就是它们所包含的对象之间的距离.2.
转载
2023-06-13 21:31:54
143阅读
层次聚类算法的主要优点在于我们无需事先知道最终所需集群数量。很遗憾的是,网上并没有很详细的教程讲述如何使用 SciPy 的层次聚类包进行层次聚类。本教程将帮助你学习如何使用 SciPy 的层次聚类模块。命名规则在我们开始之前,我们先设定一下命名规则来帮助理解本篇教程:X - 实验样本(n 乘 m 的数组)n - 样本数量m - 样本特征数量Z - 集群关系数组(包含层次聚类信息)k - 集群数量导
转载
2024-02-29 15:13:06
159阅读
'''
凝聚层次算法:首先假定每个样本都是一个独立的聚类,如果统计出来的聚类数大于期望的聚类数,则从每个样本出发寻找离自己最近的另一个样本,
与之聚集,形成更大的聚类,同时令总聚类数减少,不断重复以上过程,直到统计出来的聚类数达到期望值为止。
凝聚层次算法的特点:
1.聚类数k必须事先已知。借助某些评
转载
2023-05-24 17:30:16
209阅读
写在前面:健忘星人自学笔记,仅供参考简单易懂的阅读资料 层次聚类-概念全解 - 万勇's
前面的文章我们分别介绍了 K-means , 密度聚类,谱聚类,其中谱聚类的难度比较大,要求有一定的矩阵学习基础,今天不妨轻松一下,学习一个较为简单的“层次聚类”。正文:一、层次聚类基本原理层次的聚类方法(Hierarchical Clustering),从字面上理解,其
转载
2023-12-08 10:00:59
74阅读
层次聚类层次聚类的概念:层次聚类是一种很直观的算法。顾名思义就是要一层一层地进行聚类。层次法(Hierarchicalmethods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再 计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类 的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类 的距离定义为
转载
2024-05-15 08:15:42
119阅读
前言今天试了下用python实现层级聚类,感觉还是有不少问题。转专业的一只小菜鸡,初学代码,写的很简陋,希望各位大牛能指出不足之处。代码输入是一个长度可选的列表。这里用random随机生成,10个数据,并把数据用字母'a'、'b'等依次标记。算法实现中用树结构存储数据。树的每一个节点都是一个数据集,它的左右子树代表该节点包含的两个数据集。计算所有数据相互的距离(x1.value - x2.valu
转载
2023-09-30 21:58:26
284阅读
最近使用MDTraj对分子动力学轨迹进行聚类分析,接触到了python中的聚类实现,故将CSDN上一篇关于聚类的博客搬运至此,以作备忘:scipy cluster库简介scipy.cluster是scipy下的一个做聚类的package, 共包含了两类聚类方法:矢量量化(scipy.cluster.vq:支持vector quantization 和 k-means 聚类方法层次聚类(scipy.
转载
2023-10-16 06:15:08
127阅读