1.参考资料 https://www.codeproject.com/Articles/99457/Edge-Based-Template-Matching用opencv编写的形状匹配算法,但不具旋转和缩放功能。著名机器视觉软件Halcon 的开发人员出版的一本书2.Machine Vision Algorithms and Applications [Carsten Steger, M
转载 2024-01-05 14:12:02
111阅读
上一个教程中我们谈到的拉普拉斯算子本质上属于图像的边缘检测,但是我们同时也看到,拉普拉斯算子有一定的局限性,对于复杂图像的边缘检测有些力不从心,本次我们将介绍一个在OpenCV中有着决定性地位的边缘检测——Canny算法。我们在前面已经了解过,边缘检测算法通常有四个步骤:(1)滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘
1.canny边缘检测算法1)使用高斯滤波,滤除噪声2)计算图像中每个像素点的梯度和方向3)应用非极大值抑制,以消除边缘带来的杂散影响4)应用双阈值,检测和确定真实和潜在边缘5)通过抑制孤立的弱边缘完成边缘检测import cv2 as cv import numpy as np #canny边缘检测算法 def cvshow(img): cv.imshow("img",img)
背景概述OpenCV中自带的模板匹配算法,完全是像素基本的模板匹配,特别容易受到光照影响,光照稍微有所不同,该方法就会歇菜了!搞得很多OpenCV初学者刚学习到该方法时候很开心,一用该方法马上很伤心,悲喜交加,充分感受到了理想与现实的距离,不过没关系,这里介绍一种新的模板匹配算法,主要是基于图像边缘梯度,它对图像光照与像素迁移都有很强的抗干扰能力,据说Halcon的模板匹配就是基于此的加速版本,在
1、介绍模板匹配是一个当被搜索图像中对象的姿态 2、背景模板匹配由于它的速度和可靠性问题,在本质上是一个棘手的问题。当物体是部分可见或者混合其他对象时,解决方法应该对亮度变化具有鲁棒性,更重要的是,算法应该具有计算效率。解决这一问题的方法主要有基于灰度值的匹配(或基于区域匹配)和基于特征的匹配(非基于区域的匹配)。OpenCV中自带的模板匹配,完全是基于像素的模板匹配,很容易受光照的影响。基
转载 2024-02-28 11:43:34
141阅读
纯粹阅读,请移步OpenCV使用Canny边缘检测器实现图像边缘检测效果图源码KqwOpenCVFeaturesDemoCanny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化。Canny边缘检测器算法基本步骤 平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声。 计算图像的梯度:这里计算图像的梯度,并
目标我们将在OpenCV中使用Brute-Force匹配器和FLANN匹配器 。我们将在OpenCV中使用Brute-Force匹配器和FLANN匹配器蛮力匹配器很简单。它使用第一组中一个特征的描述符,并使用一些距离计算将其与第二组中的所有其他特征匹配。并返回最接近的一个。 对于BF匹配器,首先我们必须使用cv.BFMatcher()创建BFMatcher对象。 它需要两个可选参数。第一个是nor
详解基于边缘的模板匹配算法与OpenCV代码实现,完全适用工业级应用场景的模板匹配算法...
转载 2021-07-15 09:59:31
1945阅读
OpenCV中自带的模板匹配算法,完全是像素基本的模板匹配,特别容易受到光照影响,光照稍微有所不同,该方法就会歇菜了!搞得很多OpenCV初学者刚学习到该方法时候很开心,一用该方法马上很伤心,悲喜交加,充分感受到了理想与现实的距离,不过没关系,这里介绍一种新的模板匹配算法。
转载 2021-07-16 15:12:02
1540阅读
OpenCV中处理结构分析和形状描述(Structural Analysis and Shape Descriptors),大部分跟contours相关。 轮廓线就是一条连接所有边界点的曲线,其实也就是两点相连构成的list。 (部分翻译的外文blog)“The contours are a useful tool for shape analysis and object detection
转载 2024-03-04 06:18:48
616阅读
OpenCV(C++)】图像变换:边缘检测边缘检测的步骤Canny算子Sobel算子Laplacian算子scharr滤波器 边缘检测的步骤滤波 边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。增强 增强边缘的基础是确定图像各点邻域的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来。检测 经过增强的
转载 2024-04-05 07:57:04
227阅读
本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/theo.htmlComputer VisiAlgorithms in Image Algebra,second edition 该
       图像处理算法中,边缘检测是非常有用的。。对提取目标区域特别有用。所研究的数字图像的边缘,一般都在像素值较为剧烈的区域 。利用边缘检测算法可在大幅降低图像的同时,保留图像的系统结构特性。因此边缘检测算子也可在视为一种“滤波算法”,只保留了图像的边缘结构信息。       边缘检测算子一般分为三个步骤。&nb
转载 2023-07-26 21:55:38
149阅读
之前的坑少程序后面工作后接触到在补例程,我还是重点学习工作要用的吧,比如边缘检测。这个帖子费时有点久,所有东西本人都亲自过了一遍。1.基本概念边缘检测是图像处理与计算机视觉中的重要技术之一,其目的是检测识别出图像中亮度变化剧烈的像素点构成的集合。图像边缘的正确检测有利于分析目标检测、定位及识别,通常目标物体形成边缘存在以下几种情形:<1>目标物呈现在图像的不同物体平面上,深度不连续&l
1.图像边缘填充1.1卷积边界问题图像卷积的时候边界像素不被卷积操作,原因在于边界像素没有完全跟kernel重叠,只有当3X3的滤波时候有一个像素的边缘没有被处理,5x5滤波的时候有两个像素边缘没有处理。1.2.处理边缘在卷积开始之前增加边缘像素,填充的像素值为0或者RGB黑色,比如3x3在四周各填充1各像素的边缘,这样就确保图像的边缘被处理,在卷积处理hi后再去掉这些边缘openCV中默认的处
转载 2024-03-15 19:55:01
202阅读
OpenCV 学习(利用滤波器进行边缘提取)通过低通滤波器,我们可以将图像平滑,相反的,利用高通滤波器可以提取出图像的边缘。Sobel 滤波器Sobel 滤波器是一种有方向性的滤波器,可以作用在 X 方向或 Y 方向。 关于这种滤波器的理论介绍可以参考:https://en.wikipedia.org/wiki/Sobel_operator函数原型如下:void Sobel( InputArra
转载 2024-01-28 00:30:46
271阅读
首先讲一下我对边缘检测原理的理解。一共分4步进行理解图像数据检测数据形成数据展示数据图像数据 想要处理图像,首先要了解图像在内存中是如何存储的。图像是以矩阵的形式进行存储,类似一个表格,图像大小代表了表格的几行几列,每一个格子为一个像素点,像素点代表了这一个点的颜色。像素点有多种类型,单通道(灰色),3通道(RGB)等,不同的类型所占据的字节数也可能是不一致的。 检测数据 此文的所
在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。      图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算。      所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的
                                              1.Sobel算子   &n
边缘检测的一般步骤:第一步 滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,导数对滤波很敏感,所以一个好的滤波器很有必要第二步 增强:增强边缘的基础是确定图像各点邻域强度的变化值,增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来在编程过程中可以通过计算梯度幅值来确定第三步 检测:增强后许多点梯度值贼高,但是在特定的应用中,这些点往往不是要找的边缘点,所以要检测,常用的方法是阈值化方
  • 1
  • 2
  • 3
  • 4
  • 5