0.前言阈值化在图像处理中是一种常用的操作,比如图像的二值化就是一种最常见的一种阈值化操作。OpenCV中提供了直接阈值化操作cv::threshold()和自适应阈值化操作cv::adaptiveThreshold()两种接口,本文主要学习下基本的使用。参照文档:https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html1.直接
大家好,我是新手,最近开始研究视频的 object recognition问题,现在研究的是人手识别,看了一些论文。人脸识别方面似乎现在已经找到了效率、精度的契合点,就是appearanced based methods,adamboost的方法在人脸识别效果很好。而手势有些不同,目前还在看。有对这方面有兴趣的可以一起讨论,我的QQ:65105087,如果有这方面的讨论群,非常感激大家能告诉我。我
转载
2024-08-15 13:50:37
30阅读
备注:OpenCV版本 2.4.10在数据的挖掘和分析中,最基本和首要的任务是对数据进行分类,解决这个问题的常用方法是机器学习技术。通过使用已知实例集合中所有样本的属性值作为机器学习算法的训练集,导出一个分类机制后,再使用这个分类机制判别一个新实例的属性,并且可以通过不间断的学习,持续丰富和优化该分类机制,使机器具有像大脑一样的思考能力。常用的分类方法有决策树分类、贝叶斯分类等。然而这些方法存在的
转载
2024-08-02 12:01:06
35阅读
使用OpenCV作图像检测, Adaboost+haar决策过程,其中一部分源代码如下: 函数调用堆栈的底层为:1、使用有序决策桩进行预测templateinline int predictOrderedStump( CascadeClass...
转载
2017-03-21 15:45:00
113阅读
2评论
OpenCV自带的adaboost程序能够根据用户输入的正样本集与负样本集训练分类器,常用于人脸检测,行人检测等。它的默认特征采用了Haar,不支持其它特征。每个Haar特征对应看一个弱分类器,但并不是任伺一个Haar特征都能较好的描述人脸灰度分布的某一特点,如何从大量的Haar特征中挑选出最优的Haar特征并制作成分类器用于人脸检测,这是AdaBoost算法训练过程所要解决的关键问题。&nb
转载
2024-04-24 17:21:32
48阅读
nlp,英文全称Natural Language Processing,自然语言处理有自然语言处理工程师,虽然没接触过想必很多程序员都听说过自然语言:就是人的语言,自然语言处理就是分析人的语言的一门技术,被广泛应用到人机交互领域,机器人,语言识别等等在自然语言处理中必然要用到分词技术前段时间在项目中用到了ansj分词器,以下作简单介绍:1.官方地址项目的github地址:https://githu
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。Adaboost算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次得到的分类器最后融合起来,作为最后的决策分
转载
2023-06-21 22:14:10
309阅读
API说明:1 cv::CascadeClassifier::detectMultiScale(InputArray image,//输入灰度图像2 CV_OUT std::vector<Rect>& objects,//返回目标的外接矩形 3
转载
2018-10-27 16:20:00
313阅读
AdaBoost(Adaptive Boosting):自适应提升方法。1、AdaBoost算法介绍AdaBoost是Boosting方法中最优代表性的提升算法。该方法通过在每轮降低分对样例的权重,增加分错样例的权重,使得分类器在迭代过程中逐步改进,最终将所有分类器线性组合得到最终分类器,Boost算法框架如下图所示:图1.1 Boost分类框架(来自PRML)2、AdaBoost算法过程:1)初
转载
2023-07-24 16:03:43
151阅读
AdaBoost是集成学习Boosting思想的代表,目前对AdaBoost的解释有两种,下面对这两种解释分别进行说明。解释一adaboost算法的核心思想是:对于所有的样本我们先初始化一个权重,在算法的一开始,每个样本的权重是一样的,即每个样本被选到的概率相同。然后我们选择一个特征,只用这一个特征进行分类,得到一个弱分类器(通常,这个弱分类器的效果会比较差,会有很多的样本被识别错误)。接下来,我
转载
2023-08-17 11:15:41
0阅读
备注:OpenCV版本 2.4.10在数据的挖掘和分析中,最基本和首要的任务是对数据进行分类,解决这个问题的常用方法是机器学习技术。通过使用已知实例集合中所有样本的属性值作为机器学习算法的训练集,导出一个分类机制后,再使用这个分类机制判别一个新实例的属性,并且可以通过不间断的学习,持续丰富和优化该分类机制,使机器具有像大脑一样的思考能力。常用的分类方法有决策树分类、贝叶斯分类等。然而这些方法存在的
转载
2016-11-04 23:23:00
116阅读
更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。1. 在使用opencv_traincascade.exe 过程中,图像读取在 classifier.train -> upda...
转载
2017-04-06 10:13:00
154阅读
2评论
集成学习是一类非常有效的算法,通过将多个不同的方法组合在一起产生一个更加强大的方法。集成学习的思路包括两种,一种是bagging,一种是boosting。本文描述的是boosting中最基本的方法,即AdaBoost。 AdaBoost,全称是“Adaptive Boosting”,由Freund和Schapire在1995年首次提出,并在1996发布了一篇新的论文证明其在实际数据集中
.
转载
2022-12-16 11:12:55
450阅读
最近在使用opencv里的haar+adaboost做检测,其实早在一年前的无锡已经看过用
转载
2023-01-05 12:38:38
167阅读
Adaboost算法及其代码实现 算法概述 AdaBoost(adaptive boosting),即自适应提升算法。 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类。 为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,
原创
2021-08-06 09:35:50
1836阅读
# 使用 R 实现 AdaBoost 算法的指南
AdaBoost(Adaptive Boosting)是一种集成学习算法,主要用于分类问题。它通过组合多个弱分类器来提高模型的准确性。对于刚入行的小白来说,理解并实现 AdaBoost 算法可能会显得有些复杂。但通过本文的介绍,你将能够掌握实现流程,并实际在 R 语言中编写相应代码。
## 实现流程
在实现 AdaBoost 算法时,我们需要
以OpenCV训练级联Adaboost为例进行说明
numPos: 12000
numNeg: 120000
numStages: 15
precalcValBufSize[Mb] : 1000
precalcIdxBufSize[Mb] : 800
stageType: BOOST
featureType: HOG
sampleWidth: 40
sampleHeight: 40
boos
转载
2021-07-12 10:31:58
216阅读
贴一个可以运行的代码,供后面项目用: // haarbody.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "iostream" #include "cv.h" #include "highg
原创
2014-04-10 10:01:00
630阅读
A*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithmA *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权
转载
2023-06-29 11:52:31
108阅读