报错:RuntimeError: CUDA error: no kernel image is available for execution on the device提醒:安装pytorch时,除了要注意pytorch与torchvision版本的匹配,也要注意pytorch与cuda的版本兼容。不然……,安装环境会让你想吐~目录1.报错原因2.查看系统的cuda版本3.查看与cuda匹配的p
ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一
注:1.本文基于mmdetection-2.25.1。为啥不用最新版本?3.0的还没试,2.28的有差不多的问题,老板要求用这个版本,所以先用这个演示一遍全流程。2.本文直接用mmdetection里面提供的一个“不建议使用”的脚本来导出onnx格式(ncnn先别急),即tools/deployment/pytorch2onnx.py。为啥不用mmdeploy?一个是也不见得行,另外老板暂时不让用
一、onnxruntime C++的下载不要相信某些博客,2022年居然还是写的:我才疏学浅,试过好几次都没有成功。不要克隆不要克隆,那么大的项目你克隆到啥时候,人家发布了压缩包版本的好不好。 点击latest: 看见没有,gpu版本的才几十M!!!!!如果自己下载源码编译,很大可能会失败。用官方给的include、lib是很香的哦。二、部署一个大佬的项目:GitHub - i
转载 2024-10-05 11:42:39
241阅读
获得列表联合的最快方式 - Python(Fastest way to get union of lists - Python)有一个C ++比较来从列表列表中获得列表的联合: 找到联合集合的最快方法还有其他几个与python相关的问题,但没有一个提出将列表组合的最快方法:从答案中,我了解到至少有两种方法可以做到这一点:>>> from itertools import chai
文章目录技术交流前言AutoRec 模型介绍损失函数基于 AutoRec 的推荐过程实验对比消融实验代码实践总结参考 本文要介绍的 AutoRec 模型是由澳大利亚国立大学在2015年提出的,它将自编码器(AutoEncoder)的思想与协同过滤(Collaborative Filter)的思想结合起来,提出了一种单隐层的简单神经网络推荐模型。前言本文会介绍AutoRec模型的基本原理,包括网络
TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟、高吞吐率的部署推理。TensorRT可用于超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDA的GPU结合起来,能在几乎所有的框架种进行快速和高效的部署
基本原理将输入图像划分为S*S(最终feature map的大小)个cell,每一个cell预测B个bounding boxes,以及这些bounding boxes的confidence scores(置信度),以及C个类别概率。由于一个cell只有一组分类概率,所以在yolov1中,一个cell只能预测一个物体。训练过程中,ground truth的中点落在哪个cell中,那个cell就负责
Java 中最烦人的,就是多线程,一不小心,代码写的比单线程还慢,这就让人非常尴尬。通常情况下,我们会使用 ThreadLocal 实现线程封闭,比如避免 SimpleDateFormat 在并发环境下所引起的一些不一致情况。其实还有一种解决方式。通过对parse方法进行加锁,也能保证日期处理类的正确运行,代码如图。1. 锁很坏但是,锁这个东西,很坏。就像你的贞操锁,一开一闭热情早已烟消云散。所以
本文章记录在win10环境下用TensorRT推理YOLOv5. 例子来源于大佬的项目:https://github.com/wang-xinyu/tensorrtx,但此工程是在ubuntu上开发,在win10部署上不友好,故特作此贴。此贴致敬清华大佬王鑫宇,向王鑫宇学习! 实战教程目录1. 项目工程环境2. VS的环境配置3. YOLOV5工程编译问题4.模型转换与推理 1. 项目工程环境本文
继上一篇计划的实践项目,这篇记录我训练模型相关的工作。首先要确定总体目标:训练一个pytorch模型,CIFAR-100数据集测试集acc达到90%;部署后推理效率达到50ms/张, 部署平台为window10+3050Ti+RX5800h.训练模型的话,最好是有一套完备的代码,像谷歌的models,FB的detectron2,商汤的mm系列等等框架,这些是建立在深度学习框架tf或pth基础上的进
文章目录1. 损失的特殊性2. compute_loss3. build_targets 1. 损失的特殊性先说说YOLOV5的损失:一般检测的损失分为分类损失和回归损失。一般的检测算法: 回归损失只有正样本有分类损失的标签直接就非1即0,正样本的标签是1,负样本的标签是0(可以把背景作为一种类别一起算),这些标签根据anchor和GT框的比较就可以直接得到。比如标签是[0,1,0,0],
一个简单的多线程Python爬虫最近想要抓取拉勾网的数据,最开始是使用Scrapy的,但是遇到了下面两个问题:前端页面是用JS模板引擎生成的接口主要是用POST提交参数的目前不会处理使用JS模板引擎生成的HTML页面,用POST的提交参数的话,接口统一,也没有必要使用Scrapy,所以就萌生了自己写一个简单的Python爬虫的想法。本文中的部分链接可能需要FQ。参考资料:http://www.ib
转载 9月前
47阅读
此文主要功用是总结 threading 相关的概念、类、方法和示例代码 1。Update: 2023 / 1 / 27 Threading --- 基于线程的并行线程和进程线程本地数据概念线程对象概念方法动作查询锁对象:Lock概念方法应用场景示例1. 使用Lock与否未使用使用2. 阻塞与否不阻塞非阻塞锁获取、释放、获取、释放 ...阻塞递归锁对象:RLock概念方法Lock V.S RLock
转载 2024-10-18 15:24:05
70阅读
如果C语言功底较深  可以发出更多 拷问灵魂深处的问题; 不是所有问题 这里都提供答案;这里提供的答案 也有可能有错或很片面;对于非超级熟手,这些问题可以只是线索,答案自己去搜 去试 去扩充 这里的问题 也不全是python的  也有些计算机基础的。 大部分都是网上摘的或书上的,按个人想法汇总了一下,不是纯原创。 part1:python中的变量是什么? 变量有类型吗? a
类的定义: 类:用来描述具有相同属性和方法的对象的集合;类的常用术语: 类:对具有相同数据和方法的一组对象的描述或定义。 对象:对象是一个类的实例。 实例(instance):一个对象的实例化实现。 实例属性(instance attribute):一个对象就是一组属性的集合。 实例方法(instance method):所有存取或者更新对象某个实例一条或者多条属性 的函数的集合。 类属性(cla
一、 单机多GPU训练   深度学习由于存在计算量大,并且需要大量的数据来训练的问题,因而需要采用一些并行机制来加快训练速度,目前常用的并行方法主要有数据并行(data parallel)和模型并行(model parallel)两种。下面主要介绍tensorflow框架采用的数据并行方法 。1.1 数据并行原理   数据并行的原理如下图所示,假设有两块显卡(GPU1和GPU2),我们经常使用
前言本文讨论在Unity URP中,如何使用GPU Instancing,以及和Static Batching, SRPBatcher的关系。几种Batching方式的原理简述Static Batching将一组静态物体的模型batch成一个模型,并作为一个整体提交的GPU。绘制的时候这些物体可以正常的做culling,Unity会将通过Culling的物体使用索引偏移的方式绘制。SPR Batc
转载 2024-06-26 13:20:54
198阅读
# 使用ONNX进行ResNet推理的Python教程 在深度学习的领域中,ResNet(Residual Network)是一种非常流行的卷积神经网络架构。它可以有效地构建更深的网络,同时避免梯度消失的问题。通过将ResNet模型导出为ONNX(Open Neural Network Exchange)格式,我们可以在不同的深度学习框架中轻松进行推理。本文将引导您完成使用Python进行Res
原创 2024-08-01 12:25:04
479阅读
导读这篇文章从多个角度探索了ONNX,从ONNX的导出到ONNX和Caffe的对比,以及使用ONNX遭遇的困难以及一些解决办法,另外还介绍了ONNXRuntime以及如何基于ONNXRuntime来调试ONNX模型等,后续也会继续结合ONNX做一些探索性工作。0x0. 前言这一节我将主要从盘点ONNX模型部署有哪些常见问题,以及针对这些问题提出一些解决方法,另外本文也会简单介绍一个可以快速用于ON
  • 1
  • 2
  • 3
  • 4
  • 5