二、numpy不带括号的基本属性arr.dtype
arr.shape # 返回元组
arr.size
arr.ndim # 维度arr.reshape/arr.resize/np.resizearr.reshape(不同维度size...)有返回值,不会改变原数值;arr.resize((不同维度size...))无返回值,会直接改变原数组;np.resize(arr, (不同维度size..
转载
2024-03-11 21:48:40
168阅读
目录1.Numpy介绍2.数组2.1创建数组2.2数组的属性 2.3创建特殊的数组2.4数组切片操作 2.4.1——一维数组的切片2.4.3——二维数组的切片2.4.4——三维数组的切片2.5——reshape与resize 3.数组运算4.个人总结 1.Numpy介绍NumPy(Numerical Python) 是 Python 语言的一个扩
目录数组的其他函数编辑numpy.resize()numpy.append()numpy.insert()numpy.delete()¶数组的其他函数主要有以下方法:numpy.resize() numpy.resize(arr,shape) &n
转载
2024-03-17 14:50:42
122阅读
修改数组形状numpy.reshape(x,size)/ndarray.reshape(size)reshape函数生成前后的数组会公用相同的内存,在前后数据数量不一致时会报错numpy.resize(x,newshape)/narray.resize(newshape,refcheck)resize函数会生成新的数组,不会和生成前的数据共内存,使用numpy.resize修改形状时,前后数量不一
转载
2024-04-06 20:35:56
211阅读
章节Numpy 介绍Numpy 安装NumPy ndarrayNumPy 数据类型NumPy 数组创建NumPy 基于已有数据创建数组NumPy 基于数值区间创建数组NumPy 数组切片NumPy 广播NumPy 数组迭代NumPy 位运算NumPy 字符串函数NumPy 数学函数NumPy 统计函数NumPy 排序、查找、计数NumPy 副本和视图NumPy 矩阵库函数NumPy 线性代数 数组
转载
2024-10-18 15:40:39
68阅读
目录学习目标1 Numpy介绍2 ndarray介绍3 ndarray与Python原生list运算效率对比4 ndarray的优势(了解)4.1 内存块风格4.2 ndarray支持并行化运算(向量化运算)4.3 效率远高于纯Python代码5 小结学习目标 目标: 了解Numpy运算速度上的优势 知道Numpy的数组内存块风格 知道Numpy的并行化运算1 Numpy介绍 Numpy(Nume
熬夜整理了11种Numpy的高级操作,每一种都有参数解释与小例子辅助说明,希望对你有所帮助,看完记得点个赞收藏起呀哇~01、数组上的迭代NumPy 包含一个迭代器对象numpy.nditer。它是一个有效的多维迭代器对象,可以用于在数组上进行迭代。数组的每个元素可使用 Python 的标准Iterator接口来访问。import numpy as np
a = np.arange(0, 60, 5
回顾在数据处理利器NumPy初识(二)中,我们介绍了NumPy中的几个常用函数,包括reshape()、resize()、copy()、astype()、stack()、split()等,以及ndarray的索引和切片的基本用法。今天我们看一下NumPy中对ndarray的数据运算和广播机制的相关内容。ndarray数据运算NumPy中ndarray的数据运算包括基本标量数据运算、向量矩阵内积计算
目录 目录:(一)以文本形式存取1.说明:2.语法解释:3.实例(以.csv文件为例)4.效果展示(二)以任意的形式存取1.说明:2.语法解释:3.实例(以.bat二进制文件为例)4.效果展示(三)以np自定义的形式存取1.说明:2.语法解释:3.实例:4.实例展示 目录:目录:1.以文本形式存取2.以任意的形式存取3.以np自定义的形式存取(一)以文本形式存取1.说明:(1)适用范围:存储
转载
2024-03-16 09:54:02
69阅读
昨晚发了接受投稿文章,昨晚就有读者积极来文章啦,几轮邮件交流了修改意见后,今天就发布啦,这篇的稿费是300。 之前无聊在刷视频的时候看到这么一个有意思的视频(现在视频找不到,忘记关键字了= =),视频的内容大概是这样的:一张狗狗的侧脸照片,经过碎纸机,横的切成若干条,并且没有打乱,随后隔条分成了两份,然后把这两份各自拼接在一起,出现了两张狗狗的图片(B图和C图)。如下图:把A图分成了B
转载
2024-04-11 10:28:09
67阅读
(一)reshapenumpy.reshape(a, newshape, order='C')
#在不更改数据的情况下为数组提供新形状
#注意:根据order决定返回视图 or 副本,order 与原数组一致,则返回视图,否则返回副本
# 参数
"""
newshape:新形状的定义,int或int的元组
如果是整数,则结果将是该长度的一维数组。一个形状维度可以是-1。在这种情况下,将根据数组
还记得自己刚接触Pandas、Sklearn、Tensorflow这几个技术的时候,经常看到文档和代码中针对多维数组的创建、变形、乘法等操作,因为不了解这些知识导致难以理解进度缓慢,后来才知道它们都是在依赖Numpy这个库。后来我发现,如果想学好Pandas和Sklearn/Tensorflow这些数据分析、机器学习/深度学习的技术,Numpy是一定要系统性的学习的。本文总结下Numpy的一些重要
此函数返回具有指定大小的新数组,该函数采用以下参数。
numpy.resize(arr, shape)
Sr.No.
描述
1...
原创
2023-10-17 12:12:44
167阅读
NumPy数组NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:实际的数据描述这些数据的元数据大部分操作仅针对于元数据,而不改变底层实际的数据。关于NumPy数组有几点必需了解的:NumPy数组的下标从0开始。同一个NumPy数组中所有元素的类型必须是相同的。NumPy数组属性 在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称
转载
2024-05-21 16:16:23
67阅读
文章目录前言一、 Numpy的ReshapeReshape的实操案例二、 Numpy的ResizeResize的实操案例 前言一、 Numpy的Reshape 二、 Numpy的Resize说明: reshape和resize 都可以改变数组的形状,但是reshape不改变原有数组的数据,resize可以改变原数组的数据一、 Numpy的Reshape1.shape是查看数据有多少行多少列 2.
转载
2024-05-04 17:27:21
229阅读
NumPy 数组属性本章节我们将来了解 NumPy 数组的一些基本属性。NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumP
转载
2024-08-09 10:35:47
37阅读
Numpy应用案例借用吴恩达大神夫妇图片~注:使用numpy库来对图像进行处理。这里我们使用matplotlib.pyplot的相关方法来辅助。import numpy as np
import matplotlib.pyplot as plt图像读取与显示plt.imread:读取图像,返回图像的数组。plt.imshow:显示图像。plt.imsave:保存图像。说明:imread方法默认只能
转载
2023-12-24 14:19:18
432阅读
线性回归问题是机器学习的入门,本次介绍的是一元线性回归问题。对data数据集中的点进行线性回归问题分析。 data数据集中的数据: 线性回归分析的目的: 找到一条直线:y=w*x+b,使得点均匀的分布在直线的两端。对于初始的w和b值,我们需要设立一个初始的值,这个值一般是随机的。然后再根据梯度去不断的调整w和b的值,直到达到我们设定的迭代次数或者梯度为0.线性回归分析的步骤: ①计算loss的值
转载
2024-03-31 11:04:20
51阅读
形状改变import numpy as np
# TODO 1 形状改变
'''reshape 可以在不改变数组数据的同时,改变数组的形状,numpy.reshape(a, newshape)'''
print(np.arange(10).reshape((5, 2)))# 对生成的一维数组改变形状为5行2列
'''
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
''
转载
2024-04-19 17:11:11
13阅读
matplotlib学习一,设置图片大小import matplotlib.pyplot as plt
fig = plt.figure(figsize=(20,8),dpi=80)
# figure图形图标的意思,在这里值得就是我们画的图
#通过实例化一个figure并且传递参数,能够在后台自动使用figure实例
#在图像模糊的时候柯延传入dpi参数,让图片更加清晰