numpy求和import numpy as npa = np.array([[1, 2, 1], [3, 4, 5]])# axisum(a))
原创 2022-11-16 19:34:08
2009阅读
我们使用(keepdims = True)来确保 A.shape 是(4,1)而不是(4,),它使我们的代码更加严格。容易减少深度学习中代码bug
转载 2019-01-18 20:22:00
360阅读
2评论
     众所周知,sum不传参的时候,是所有元素的总和。这里就不说了。1 sum函数可以传入一个axis的参数,这个参数怎么理解呢?这样理解:假设我生成一个numpy数组a,如下 [python]  view plain  copy 1. >>> import numpy as np 2
转载 2023-10-21 17:55:34
92阅读
在计算 语义分割 结果的 metrics 的时候,会通过 K.sum 来计算 TP、FN、FP 的值,从而来计算 Precision、Recall、F1 以及 IOU 的值,不过在计算的过程中,这几个值会出现大于 1 的情况,实际上是计算中出现错误,主要原因就是 K.sum 计算中的一些问题。由于标 ...
转载 2021-08-07 11:29:00
114阅读
2评论
aggfunc 是用于聚合数据的功能,通常在 Pandas 中用于数据透视表(pivot table)或 GroupBy 操作中。让我们来详细探讨一下 aggfunc 和它的不同用法。sum:sum 是 Python 内置的函数,用于计算一组数值的总和。在数据透视表或 GroupBy 操作中,aggfunc=sum 将对每个分组的数值列求和。例如,对于你提供的 DataFrame,df.pivot
原创 2024-03-20 16:16:36
407阅读
Numpy库---通用函数一元函数:二元函数:聚合函数:布尔数组的函数:排序:其他函数补充: 一元函数:二元函数:聚合函数: 使用np.sum或者是a.sum即可实现。并且在使用的时候,可以指定具体哪个轴。同样Python中也内置了sum函数,但是Python内置的sum函数执行效率没有np.sum那么高,可以通过以下代码测试了解到:a = np.random.rand(1000000) %ti
pivot  用 np.sum  而不是 "sum"df_pivot = df.pivot_table( 16:39:41 [#-1] File "D:\Program Files\fs\speed_dev\resources\Lib\site-packages\pandas\core\frame.py", line 8728, in pivot_table 16:39:41
原创 2024-02-19 16:46:27
62阅读
 众所周知,sum不传参的时候,是所有元素的总和。这里就不说了。1 sum函数可以传入一个axis的参数,这个参数怎么理解呢?这样理解:假设我生成一个numpy数组a,如下 [python]  view plain  copy 1. >>> import numpy as np 2. >>>
import numpy as np import pandas as pd # 加法 sum函数 输出 np.nan # pd.Series.sum np.nan 为 0 print( pd.Series([np.nan, 1]).sum() )
原创 2024-04-06 07:37:06
33阅读
numpy.sumnumpy.sum(a, axis=None, dtype=None, out=None, keepdims=Parameters:a : array_like Elements to sum.axis : None or int or tuple ofng which a sum is performed. Th
原创 2023-06-07 00:15:19
98阅读
1.np.max(a, axis=None, out=None, keepdims=False)求序列的最值最少接受一个参数axis默认为axis=0即列向,如果axis=1即横向ex:>> np.max([-2, -1, 0, 1, 2])22.np.maximum(X, Y, out=None) X和Y逐位进行比较,选择最大值....
原创 2021-08-12 22:23:34
231阅读
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge() import numpy as np a = np.array([1, 2, 3]) b
转载 2019-03-02 21:19:00
135阅读
2评论
import pandas as pd import numpy as np print( sum([ np.nan,1 ]) ) # np.nan 除非pd.df.sum
sum
原创 2024-03-27 13:05:27
41阅读
文章目录*;np.multiply();np.matmul() 或 @;np.dot()的异同1 尺寸相同的两个1-D array2两个2-D array3 两个 matrix4 维数大于2的array*;np.multiply();np.matmul() 或 @;np.dot()的异同In [1]: import numpy as np1 尺寸相同的两个1-D arrayIn [2]: a=np.array([1,2])In [3]: b=np.array([3,4])In [4]: a
原创 2021-06-21 15:30:36
2379阅读
np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。1、np.c_ 用法:a = np.array([[1, 2, 3],[7,8,9]]) b=np.array([[4,5,6],[1,2,3]]) aOut[4]: array([[1, 2, 3], [7, 8, 9]...
原创 2019-04-10 17:10:08
728阅读
import numpy as np; 两者在创建单位矩阵上,并无区别,两者的区别主要在接口上; np.identity(n, dtype=None):只能获取方阵,也即标准意义的单位阵; np.eye(N, M=None, k=0, dtype=<type ‘float’>); N : int,Number of rows in the output.(行数,必选) M
转载 2016-10-25 23:01:00
150阅读
2评论
import numpy as np; 两者在创建单位矩阵上,并无区别,两者的区别主要在接口上;np.identity(n, dtype=None):只能获取方阵,也即标准意义的单位阵;np.eye(N, M=None, k=0, dtype=<type ‘float’>); N : int,Number of rows in the output.(行数,必选)M : int,
ide
转载 2016-10-25 23:01:00
202阅读
2评论
简介NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。使用我们仅需要简单的通过import numpy as np就可以使用numpy了。为什么要用numpy?如果我们希望两个列表对应项相
转载 2023-11-19 09:33:09
410阅读
课上笔记(六)(Python)学习使我快乐NumPy→(Numerical+Python)首先你需要知道,以后基本会使用 import numpy as np import pandas as pdndarratys NumPy有着极为强大对象:ndarrays(Python的扩展)首先尝试着创建一个ndarrays输入: import numpy as np a = np.array([
转载 2024-05-31 22:25:46
98阅读
例子:"""np.finfo使用方法eps是一个很小的非负数除法的分母不能为0的,不然会直接跳出显示错误。使用eps将可能出现的零用eps来替换,这样不会报错。"""import numpy as npx = np.array([1, 2, 3], dtype=float)eps = np.finfo(x.dtype).eps # eps = 2.220446049250313e-16 type = <class 'numpy.float64'>pri
原创 2021-08-12 22:22:55
1069阅读
  • 1
  • 2
  • 3
  • 4
  • 5