NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。整数数组索引以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素。import numpy as np
a=np.array([[1,2,3],[4,5,6],[7,8,9]])
b=a[[0,1,2],[0,1,0]]
print(b)&nb
转载
2024-05-24 21:49:44
74阅读
转载请注明:虚幻私塾 » Numpy 索引一维索引我们都知道,在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy
原创
2022-06-16 21:15:53
186阅读
ndarray 对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作 一样。ndarray 数组可以基于 0 - n 的下标进行索引,并设置 start, stop 及 step 参数进行,从 原数组中切割出一个新数组。一维数组切片和索引的使用import numpy as np
x = np.arange(10)
y = x[2:7:2]
z = x[2:]
pr
转载
2024-03-02 10:52:26
202阅读
左滑查看目录 形状操纵 我们在创建二维数组的过程中,借助
reshape()
函数,将一维数组转换为矩阵 。
>>> a = np.random.random(12)>>> aarray([ 0.77841574, 0.39654203, 0.38188665, 0.26704305, 0.27519705,
转载
2024-06-18 10:25:02
42阅读
#基础索引"""
一维数组的索引
1.可正可负 左开右闭 一正一负
2.和String的索引有点像
"""
np01 = np.arange(10)#[0,1,2,3,4,5,6,7,8,9]
print(np01[4])#索引是4的数据
print(np01[0:4])
print(np01[-7:-1])
print(np01[7:-1])
print(np01[0:4:2])import
转载
2024-03-18 20:37:22
61阅读
第四课:本课内容:
• 0. 导入 NumPy 包
• 1. 创建 NumPy 数组
• 2. 索引和切片
• 3. 读取文件
• 4. 布尔型索引
• 5. 数组的运算
• 6. 常用函数举例
NumPy 是 Numerical Python 的简称,是 Python 科学计算的核心包,也是高性能科学计算和数据分析的基础包。numpy 特性:
转载
2024-07-25 09:33:14
40阅读
Numpy 数组及其索引先导入numpy:In [1]:from numpy import *产生数组从列表产生数组:In [2]:lst = [0, 1, 2, 3]
a = array(lst)
aOut[2]:array([0, 1, 2, 3])或者直接将列表传入:In [3]:a = array([1, 2, 3, 4])
aOut[3]:array([1,
转载
2023-12-07 03:21:31
89阅读
Nunpy数组的索引和切片要结合其形状来理解,如果理解numpy多维数组的形状,那么其切片也很好理解。建议在阅读下面部分内容前,先看一下numpy多维数组形状的讲解(字数不多,言简意赅且和下面讲解内容相关)索引 Numpy的索引和切片其实是两个连贯的步骤,首先要索引,其次要切片。什么意思呢?索引是确定对哪
转载
2024-03-20 19:59:07
48阅读
终于来到重点部分了。。。说白了用途就是在创建的数组上提取数据或者修改数据,以下为具体介绍。 数组索引机制指的是用方括号([])加序号的形式引用单个数组元素,它的用处很多,比如抽取元素,选取数组的几个元素,甚至为其赋一个新值。1.整数索引【例1】要获取数组的单个元素,指定元素的索引即可。import numpy as np
#一维数组
x = np.array([1, 2, 3, 4, 5, 6,
转载
2024-02-22 01:31:59
290阅读
一、基础索引Numpy数组索引是一个大话题,有很多方式可以让你选中数据的子集或某个单位元素。一维数组比较简单,看起来和Python的列表类似:import numpy as np
arr = np.arange(10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[5]
5
arr[5:8]
array([5, 6, 7])
arr[5:8]
转载
2024-05-02 17:16:56
75阅读
前言索引指的是用方括号 “[ ]” 加序号的形式引用数组中特定位置的元素,它的作用是从数组中取出一部分相应的元素重新组成一个子数组,而这个子数组就是通过索引得到的切片。一、副本与视图在Numpy中做数组运算时,返回的结果只有两种,一是“视图”,二是“副本”。import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x # 创建视图
转载
2024-04-23 10:44:55
224阅读
数组索引引言1. 单个元素索引2. 数组切片3. 索引数组4. 布尔索引数组5. 结构索引工具参考文献 引言数组索引是指使用方括号([])来索引数组值。我们最为熟悉的索引方式就是单个元素索引。此外,本文还将介绍数组切片的索引方式,以及索引数组、布尔索引数组和结构索引工具等内容。1. 单个元素索引注意:索引的起始位置为0 当数组为一维数组时:>>> x = np.arange(1
转载
2023-08-11 20:44:02
624阅读
接上上篇blog: Numpy基础功能索引ndarrayndarray(数组)作为Numpy中定义的一个对象,是Numpy的基础。ndarray是一个同构数据多维容器。也就是说,ndarray作为一个容器,其中数据的数据类型必需是相同的,其中的数据可以是多维的。ndarray有两个属性来形容它自己:shape表示数组结构+dtype表示数组的数据类型。创建数组最常用的是np.array()In [
索引和切片一维数组一维数组很简单,基本和列表一致。它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改)。这也意味着,如果不想更改原始数组,我们需要进行显式的复制,从而得到它的副本(.copy())。import numpy as np #导入numpy
arr = np.arange(10) #类似于list的range()
arr
Out[3]: array([
转载
2024-09-25 16:03:33
41阅读
背景什么是 NumPy 呢?NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库,可以帮助程序员轻松地进行数值计算,通常应用于以下场景:执行各种数学任务,如:数值积分、微分、内插、外推等。因此,当涉及到数学任务时,它形成了一种基于 Python 的 MATLAB 的快速替代。计算机中的图像表示为多维数字数组。NumPy 提供了一些优秀的库函数
一维数组arr = np.arange(10) # 创建一个 0-9的数组
print (arr)
print (arr[5]) #arr的第6个元素
print (arr[5:8]) # arr的第6-8个元素,[5:8]左闭右开
arr[5:8] = 12 # 对数组的切片的改变 会直接使原数组的值进行改变
print (arr)
arr_slice = arr[5:8] # 我们将
1.神奇索引: 在上一个博客中讲到,一些索引的使用方法,但是当遇到一些特殊的需求的时候,就不能实现数据的快速索引和修改了。因此,这里我们引出神奇索引。利用布尔值进行索引。以下是演示的实例。 注意,当我们使用神奇索引来取数据的时候,只能返回一个一维数组。其中满足条件的元素存在在一维数组中。存在降维现象。 2.Numpy的逻辑运算
转载
2024-03-29 07:40:40
30阅读
import numpy as nparr1 = np.arange(2,14)print(arr1)print(arr1[2:5])print(arr1[2
原创
2023-02-17 11:11:27
71阅读
NumPy - 高级索引 如果一个ndarray是非元组序列,数据类型为整数或布尔值的ndarray,或者至少一个元素为序列对象的元组,我们就能够用它来索引ndarray。高级索引始终返回数据的副本。 与此相反,切片只提供了一个视图。 有两种类型的高级索引:整数和布尔值。 整数索引 这种机制有助于基
原创
2018-09-13 15:22:00
179阅读
取指定的行和连续的行取不连续的多行取连续的列和不连续的列取多个不相邻的点
原创
2022-12-28 15:22:20
63阅读