当我们拿到一段文本的时候,要经过如何的处理才能进入模型呢,我们把这个过程称为文本预处理。一般经过这几个步骤:原始文本>分词>清洗>标准化>特征提取>建模 1:分词分词的常用工具:Jieba分词 https://github.com/fxsjy/jiebaSnowNLP https://github.com/isnowfy/snownlpLTP h
# 如何实现文本纠错的NLP技术指导 在自然语言处理(NLP)中,文本纠错是一个重要的研究领域。对于刚入行的开发者,理解这一过程是实现文本纠错应用的第一步。本文将带领你通过几个步骤了解如何使用 NLP 技术来实现文本的纠错功能。 ## 实现文本纠错的步骤 | 步骤 | 描述 | |------|------| | 1 | 安装所需的库 | | 2 | 数据预处理 | | 3
原创 7月前
115阅读
ACL2021论文收录列表:ACL-IJCNLP 2021中文文本纠错paper&code列表:CTCResources/README_ZH.md (github.com)中文处理文章集合:Special Interest Group on Chinese Language Processing (SIGHAN) - ACL Anthology论文一:ACL2021PLOME: Pre-t
一、什么是文本挖掘? 讨论文本挖掘之前,我们要先说一下数据挖掘的概念,因为文本挖掘是数据挖掘的一个分支。数据挖掘(Data Mining)指从大量的数据中通过算法搜索隐藏在其中信息的过程。而文本挖掘就是从文本数据中获取有价值的信息和知识的过程,最基本的应用就是实现文本的分类和聚类。 二、文本挖掘有什么用?它和 NLP 有关系吗? 也许有人会疑惑,文本挖掘和 NLP
本文详细介绍Blackstone项目——基于spaCy的法律文本NLP处理管道与模型,包含命名实体识别、文本分类等核心技术,以及自定义组件如缩写解析、案例引用检测和法规链接功能。
原创 1月前
92阅读
文本摘要提取之前写过一版 文本摘要提取,但那版并不完美。有所缺陷(但也获得几十次收藏)。今天写改进版的文本摘要提取。文本摘要旨在将文本文本集合转换为包含关键信息的简短摘要。文本摘要按照输入类型可分为单文档摘要和多文档摘要。单文档摘要从给定的一个文档中生成摘要,多文档摘要从给定的一组主题相关的文档中生成摘要。按照输出类型可分为抽取式摘要和生成式摘要。 摘要:意思就是从一段文本 用几句话来概括这段话
转载 2023-09-28 21:57:30
144阅读
项目2:新闻文本挖掘与分类MLDL一、 文本分析与可视化读取数据,去除有缺失值的行,分词去除停用词统计词频做词云二、 中文自然语言处理分析1. 关键词提取1.1 基于TF-IDF算法的关键词抽取import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())senten
摘要:近年来,自然语言处理行业蓬勃发展,在市场上得到广泛应用,尤其是基于NLP的AI伪原创技术。 自从我上学以来,我写了很多文章。文章的深度是不同的。今天,由于某些需要,我再次阅读文章并将它们放在一起,这也可以称为概述。博客上有关于这些问题的详细文章。本文仅是其各个部分的高级摘要。1什么是文本挖掘?文本挖掘是基于文本信息进行知识发现的信息挖掘研究分支。文本挖掘的准备涉及三个步骤:文本收集,文本分析
作者 | 周俊贤  文本分类是NLP领域的最常见工业应用之一,也是本人在过去的一年中接触到最多的NLP应用,本文「从工业的角度浅谈实际落地中文本分类的种种常见问题和优化方案」。由于,项目中的数据涉密,所以拿公开的两个数据集进行实验讲解:今日头条的短文本分类和科大讯飞的长文本分类,数据集的下载见github的链接。https://github.com/zhou
时间: 2019-8-14引言两篇文章与大家分享,第一篇作者对通用文本匹配模型进行探索,研究了构建一个快速优良的文本匹配模型所需条件,在此条件下,其模型性能与最先进的模型相当,且参数少速度快(6倍);第二篇主要研究了集成语言输入特征对神经网络模型产生的影响,并且发现输入特性对性能的影响比我们研究的任何体系结构参数都要大。First BloodTILE: Simple and Effective T
NLP-文本挖掘-综述一、什么是文本挖掘二、文本挖掘五个步骤三、7种文本挖掘的方法 一、什么是文本挖掘文本挖掘的意义就是从数据中寻找有价值的信息,来发现或者解决一些实际问题。 每到春节期间,买火车票和机票离开一线城市的人暴增——这是数据 再匹配这些人的身份证信息,发现这些人都是从一线城市回到自己的老家——这是信息 回老家跟家人团聚,一起过春节是中国的习俗——这是知识二、文本挖掘五个步骤数据收集、
在当今大数据的时代,NLP(自然语言处理)技术正变得日益重要。文本结构化问题主要涉及如何将非结构化文本数据转化为结构化信息。这一过程在信息提取、数据分析和知识图谱等领域具备广泛的应用。本博文将详细记录NLP技术文本结构化过程中的各个环节,通过具体实例和数据展示,以便更好地理解这一技术的实现和应用。 ## 协议背景 首先,我们需要了解NLP技术文本结构化中的协议背景。NLP技术的发展可追溯到
原创 5月前
23阅读
# NLP技术文本转换中的应用 随着自然语言处理(NLP技术的快速发展,文本转换已经成为一个重要的应用领域。本文将探讨如何利用NLP技术进行文本转换,以解决一个实际问题:将非结构化的客户反馈文本转化为结构化的数据,以便于分析和决策。 ## 实际问题 在客户服务行业,企业通常接收到大量的客户反馈。但是,这些反馈往往以非结构化的文本形式存在,难以进行有效的分析。如何将这些文本信息转化为结构化
原创 2024-10-22 05:58:53
52阅读
背景在信息搜索中,我们做的第一步就是检索。对于文本检索中,第一步就是数据库中的内容与检索的内容进行匹配,符合匹配要求的话就根据相关业务处理。在NLP中,我们可以认为是要让机器去理解检索内容,然后从现有数据库中返回对应内容。从这看文本匹配就是NLU(Nature Language Understand ,自然语言理解)中的核心内容了。再延展一下,搜索这项功能在我们生活中也是太多太多。大众一点就是搜索
转载 2024-08-12 16:20:39
236阅读
文章目录d. SimCSE:2021.04UnsupervisedSupervisede. R-Drop(Supervised):2021.06f. ESimCSE(Unsupervised):2021.09g. PromptBERT(Unsupervised):2022.01h. SNCSE(Unsupervised):2022.01i. DiffCSE(Unsupervised):2022.
自然语言处理-学习笔记①1.概要2.文本预处理作用及其主要环节2.1文本处理的基本方法:2.1.1分词2.1.2词性标注2.1.3命名实体识别2.2文本张量的表示方法:2.2.1one-hot编码2.2.2word2vec2.2.3word Embedding2.3文本语料的数据分析:2.3.1标签数量分布2.3.2句子长度分布2.3.3词频统计与关键词词云2.4文本特征处理:2.4.1添加n-
转载 2023-10-28 15:43:03
37阅读
本文共计1463字,预计阅读时长八分钟 NLP-基础和中文分词一、本质NLP (Natural Language Processing) 自然语言处理是一门研究计算机处理人类语言的技术二、NLP用来解决什么问题语音合成(Speech synthesis)语音识别(Speech recognition)中文分词(Chinese word segmentation)☆文本分类(Text c
1. 基础概念周所众知,非数值型的文本数据是不能直接输入机器学习模型的,要先经过编码转化成数值型数据才可用于模型训练或预测。而文本表示,就是研究如何将文本数据合理编码成向量或矩阵形式的数值型数据的技术。自然语言文本中,篇章由段落构成,段落由句子组成,而句子由单词构成。而 词典中,每个单词都有多种含义,因此只看文本单独出现的单词难以确定其所想表达的含义;所以只有当单词放到句子中,结合其上下文共同出现
语言检测,文本清理,长度测量,情绪分析,命名实体识别,n字频率,词向量,主题建模前言在本文中,我将使用NLP和Python解释如何分析文本数据并为机器学习模型提取特征。NLP(自然语言处理)是人工智能的一个领域,研究计算机和人类语言之间的交互,特别是如何编程计算机来处理和分析大量的自然语言数据。NLP经常被应用于文本数据的分类。文本分类是根据文本数据的内容给文本数据分配类别的问题。文本分类最重要的
文本分类概述(NLP)**文本分类问题:**给定文档p,将文档分类为n个类别中的一个或多个 **文本分类应用:**常见的有垃圾邮件识别,情感分析 **文本分类方向:**主要有二分类,多分类,多标签分类 **本分分类方法:**传统机器学习方法(贝叶斯、SVM等),深度学习方法(fastText,TextCNN等) **本文的思路:**本文主要介绍文本分类的处理过程,主要哪些方法。致力让读者明白在处理
  • 1
  • 2
  • 3
  • 4
  • 5