背景情况用户表达到了 几千万级别,在做很多操作都比较吃力,.所以,考虑对其进行分表. 常用的切分方案数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分;另外一种则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数
转载
2024-02-21 12:35:42
30阅读
在日常开发任务中,经常会遇到单张表过1千万,以每天n万条的速度进行递增。sql查询效率下降,前端业务表现为用户操作缓慢,如查sql查询速度超过1秒或者更长,会发生一条sql把整个数据库连接占满,用户看到的就是白页面或报错的页面。mysql数据库存储是系统最后一道护城河,以最谨慎的态度对待。系统就像一个成长的小树,慢慢的长大,每一天的成长都需要不停的修剪、不停的优化。关于大表的优化常见的思路就是分表
转载
2024-03-15 18:41:47
996阅读
1. 创建一张测试表:DROP TABLE IF EXISTS `user`; CREATE TABLE `user` ( `id` bigint(20) PRIMARY key not null AUTO_INCREMENT, `username` varchar(50) DEFAULT NULL, `email` varchar(30) DEFAU...
原创
2022-11-28 17:16:17
461阅读
前言平时在写一些小web系统时,我们总会对mysql不以为然。然而真正的系统易用应该讲数据量展望拓展到千万级别来考虑。因此,今天下午实在是无聊的慌,自己随手搭建一个千万级的数据库,然后对数据库进行一些简单的CRUD来看看大数据情况下的CRUD效率。结果发现,曾经简单的操作,在数据量大的时候还是会造成操作效率低下的。因此先写下这篇文章,日后不断更新纪录一下自己工作学习到的Mysql优化技
方案概述方案一:优化现有mysql数据库。优点:不影响现有业务,源程序不需要修改代码,成本最低。缺点:有优化瓶颈,数据量过亿就玩完了。 方案二:升级数据库类型,换一种100%兼容mysql的数据库。优点:不影响现有业务,源程序不需要修改代码,你几乎不需要做任何操作就能提升数据库性能,缺点:多花钱 方案三:一步到位,大数据解决方案,更换newsql/nosql数据库。优点:没有数据容量瓶颈,缺点:需
转载
2023-08-04 12:12:07
238阅读
第一优化你的sql和索引;第二加缓存,memcached,redis;第三以上都做了后,还是慢,就做主从复制或主主复制,读写分离,可以在应用层做,效率高,也可以用三方工具,第三方工具推荐360的atlas,其它的要么效率不高,要么没人维护;第四如果以上都做了还是慢,不要想着去做切分,mysql自带分区表,先试试这个,对你的应用是透明的,无需更改代码,但是sql语句是需要针对分区表做优化的,sql条
转载
2023-10-15 20:42:33
90阅读
实践中如何优化MySQL实践中,MySQL的优化主要涉及SQL语句及索引的优化、数据表结构的优化、系统配置的优化和硬件的优化四个方面,如下图所示: SQL语句及索引的优化SQL语句的优化SQL语句的优化主要包括三个问题,即如何发现有问题的SQL、如何分析SQL的执行计划以及如何优化SQL,下面将逐一解释。怎么发现有问题的SQL?(通过MySQL慢查询日志对有效率问题的SQ
转载
2024-07-08 21:06:20
49阅读
千万级大表如何优化,这是一个很有技术含量的问题,通常我们的直觉思维都会跳转到拆分或者数据分区,在此我想做一些补充和梳理,想和大家做一些这方面的经验总结,也欢迎大家提出建议。从一开始脑海里开始也是火光四现,到不断的自我批评,后来也参考了一些团队的经验,我整理了下面的大纲内容。 既然要吃透这个问题,我们势必要回到本源,我把这个问题分为三部分:“千万级”,“大表”,“优化”,也
转载
2024-07-28 10:50:56
73阅读
# MySQL 千万级数据中的 NOT IN 查询优化
在处理千万级数据时,MySQL 数据库的性能可能会受到很大影响,尤其是涉及到复杂查询时。其中,`NOT IN` 是一种常见的查询操作,它用于从一组记录中排除特定条件的数据。然而,使用 `NOT IN` 查询时,性能往往不如预期,尤其是在大数据集上。
## 1. `NOT IN` 的基本用法
`NOT IN` 操作符用于选择不在指定列表中
原创
2024-10-19 03:30:22
133阅读
# Java查询PGSQL千万级数据量单表
## 引言
在现代软件开发中,数据量的增长是常态。当我们面对千万级甚至亿级的数据量时,查询效率就成为了一个非常重要的问题。在本文中,我们将探讨如何使用Java语言来查询PGSQL数据库中的千万级数据量单表,并给出相应的代码示例。
## 准备工作
在开始之前,我们需要先做一些准备工作:
1. 安装PGSQL数据库并创建一个包含千万级数据的表;
2
原创
2023-12-21 07:26:07
362阅读
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,可能会死在那儿。分表或分区的目的就在于此,减小数据库的负担,缩短查询时间。比如系统将近20亿数据每张表最大的接近519w条/表,每条数据大约3k,1131M将近1G的表数据。查询经常超时,单条SQLcount(*)查询时间达到最大260ms,0.26s。标准是超过0.1s的数据为慢SQL。一.InnoDB逻辑存储结构首先要
转载
2024-06-08 15:58:32
105阅读
Oracle千万级记录进行处理并不简单,下面就为您总结了Oracle千万级记录插入和查询的技巧,希望对您能够有所启迪。最近做了个项目,实现对存在Oracle千万级记录的库表执行插入、查询操作。原以为对数据库的插入、查询是件很容易的事,可不知当数据达到百万甚至千万条级别的时候,这一切似乎变得相当困难。几经折腾,总算完成了任务。1、防止运用 Hibernate框架Hibernate用起来虽然方便,但对
转载
2023-12-01 09:16:44
101阅读
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:字段尽量使用TINYINT、SMALLINT
转载
2024-07-05 22:22:45
313阅读
喜欢这样的论调:MySQL只做简单的事情,千万级的表,无论怎样优化,同样的SQL,都没有在十万级的表中执行效率快;因此,在设计千万级的大表之前,要先问自己几个问题数据是否存在明显的冷热(考虑旧数据归档)是否可以按照时间、区域等条件拆分表如果字段过多,是否可以考虑按照字段的关联性进行拆分我们当然希望每个应用都可以这样,但理想终归是理想,现实中,轮到我们自己撸袖子上阵的时候,坑,大多已经是一眼忘不到底
转载
2024-03-19 10:19:59
33阅读
数据表的设计原则(1)不应针对整个系统进行数据库设计,而应该根据系统架构中的组件划分,针对每个组件所处理的业务进行组件单元的数据库设计;不同组件间所对应的数据库表之间的关联应尽可能减少,如果不同组件间的表需要外键关联也尽量不要创建外键关联,而只是记录关联表的一个主键,确保组件对应的表之间的独立性,为系统或表结构的重构提供可能性。 (2)采用领域模型驱动的方式和自顶向下的思路进行数据库设计
转载
2023-07-26 14:22:21
79阅读
当需要对表进行ddl操作如加索引、增删列时,数据量小时直接在线修改表结构影响不大当表达到百万、千万数据就不能直接在线修改表结构下面是具体的过程:1、备份数据select * from ih_order into outfile '/bak/order.txt';mysql> select * from ih_order into outfile 'D:/bak/order.
原创
2023-08-25 10:06:24
289阅读
mysql数据量大时使用limit分页,随着页码的增大,查询效率越低下。本文给大家分享的是作者在使用mysql进行千万级数据量分页查询的时候进行性能优化的方法,非常不错的一篇文章,希望能帮助到大家。
转载
2023-07-04 09:40:17
126阅读
有网友问我在win2003下如何自动备份MySQL数据库,既然是自动备份,那肯定得写脚本。我想了想,这个并不是很困难,是很容易实现的,备份可以用脚本实现,那自动又该如何实现呢?也很简单,就用windows自带的“任务计划”功能,设定一个时间,让系统定时跑脚本,不就实现了自动备份数据库的功能了吗?首先把脚本代码贴出来: view plain
copy to clipboard
前言千万级大表如何优化,这是一个很有技术含量的问题,通常我们的直觉思维都会跳转到拆分或者数据分区。除此之外,还有其他的思路和解决方案。根据本人多年的工作经验,做了如下总结。方案"千万级大表优化"这句话有3个关键字: 千万级,大表和优化。接下来将就这3个关键字展开讨论。数据量:千万级随着业务的发展,应用需要处理的数据量也是动态变化的。这也意味着要带着一种动态思维来系统的数据量,从而对于不同的场景我们
转载
2023-08-14 13:15:33
2099阅读
背景介绍有个数字化转型项目采用MySQL数据库,有张大表数据两千万左右,深度分页(比如翻页1000万行)后查询比较慢,需要进行优化需求分析 1)由于B端项目需要查询全量数量,查询条件有起止日期,没有采用水平分表方案,如根据用户ID水平分表、根据时间水平分表等 2)采用ES、Hive+Impala、ClickHouse等OLAP方案需要引入其他技术栈,开发资源、进度等无法满足要求本文主要分析大表深度
转载
2023-09-05 10:22:33
302阅读