“做完的事出个报告发给相关人员。” “有模版吗?” "等,发你个模版,照着做。" “好,有模版好办事。”模: mo,法式,规范,标准         mu,用压制或浇注的方法使材料成为一定形状的工具 -- 新华字典 什么是模板 ?mu ban,用一定的规范,标准使物体成固定型状的模具。模具由条形板材构成。   &nbs
转载 2023-08-07 11:33:17
507阅读
开始看目标检测方面论文,里面有很多经典,会在这儿记录下论文中的优点和代码中的问题,也会把别人blog比较好的观点总结。阅读顺序差不多按照: https://github.com/amusi/awesome-object-detectionR-CNN参考: pipeline:1. 使用selective search生成1k-2k个候选框;2. 对于候选区域,提取cnn特征(40
这是一个比较基本的问题,旨在考察面试者是否了解Microsfot在Web应用程序开发上的两项重要技术,并且重点是“区分”这个概念。应聘者对于这类问题应该做出简洁正确的回答。 【出现频率】★★★★★ 【关键考点】ASPASP.NET 【考题分析】ASP与ASP.NET是Microsoft公司在Web应用程序开发上的两项重要技术。希望读者花费一点时间去学习并理解ASP与A
转载 2023-12-13 16:20:56
31阅读
在用ASP.NET开发时,经常要用到脚本语言javascript,有时还需相互取值。 1.JAVASCRIPT>>ASP.NET 思想:把javascript的值放入第三方(如页面控件中,SESSION),在ASP.NET中取出第三方中的值
转载 2023-06-14 19:10:48
54阅读
“计算机视觉研究院”计算机视觉研究院专栏作者:Edison_G目标检测发展越来越火热,尤其现在的小目标检测越来越难突破。最近大量阅读了目标检测领域的高质量文献,今天首先分享一篇我个人觉得很不错的一个创新,可感知尺度的目标检测新网络,性能可达27FPS/38.5 mAP;55FPS/32.% mAP,优于TripleNet、RFBNet等网络!1.前言Single-shot探测器由于具有实时检测和提
原创 2022-10-07 15:54:23
828阅读
1.Response对象         Response对象是HttpResponse类的一个对象,与一个HTTP响应相对应,通过该对象的属性和方法可以控制如何将服务器端的数据发送到客户端浏览器。 (1) Response对象的属性n      
转载 2023-08-14 11:28:54
184阅读
V模型,W模型,X模型,H模型一、V模型  在软件测试方面,V模型是最广为人知的模型,尽管很多富有实际经验的测试人员还是不太熟悉V模型,或者其它的模型。V模型已存在了很长时间,和瀑布开发模型有着一些共同的特性,由此也和瀑布模型一样地受到了批评和质疑。V模型中的过程从左到右,描述了基本的开发 过程和测试行为。V模型的价值在于它非常明确地标明了测试过程中存在的不同级别,并且清楚地描述了这些测试阶段和开
原创 2014-04-11 11:25:12
10000+阅读
流动模型流动是默认的网页布局格式,默认情况下HTML元素都根据该模式来分布网页内容。 该他元素都在一行上
原创 2023-01-03 11:50:56
128阅读
这三个模型都可以用来做序列标注模型。但是其各自有自身的特点,HMM模型是对转移概率和表现概率直接建模,统计共现概率。而MEMM模型是对转移 概率和表现概率建立联合概率,统计时统计的是条件概率。MEMM容易陷入局部最优,是因为MEMM只在局部做归一化,而CRF模型中,统计了全局概率,在 做归一化时,考虑了数据在全局的分布,而不是仅仅在局部归一化,这样就解决了MEMM中的标记偏置的问题。举个例
转载 2022-12-19 17:37:40
220阅读
推理的基本概念3.1.1 推理的定义3.1.2 推理方式及其分类 1.演绎推理:一般 → 个体三段论式(三段论法)2.归纳推理:个体 → 一般完全归纳推理(必然性推理)不完全归纳推理(非必然性推理) 3.默认推理(缺省推理):知识不完全的情况下假设某些条件已经具备所进行的推理。 1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。 2.不确定性推理:推理
1 模型融合目标对于多种调参完成的模型进行模型融合。2 内容介绍模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。简单加权融合: 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);分类:投票(Voting);综合:排序融合(Rank averaging),log融合。stacking/blending: 构建多层模型,并利用预
V模型   在软件测试方面,V模型是最广为人知的模型,尽管很多富有实际经验的测试人员还是不太熟悉V模型,或者其它的模型。V模型已存在了很长时间,和瀑布开发模型有着一些共同的特性,由此也和瀑布模型一样地受到了批评和质疑。V模型中的过程从左到右,描述了基本的开发 过程和测试行为。V模型大体可以划分为以下几个不同的阶段步骤:需求分析、概要设计、详细设计、软件编码、单元测试、集成测试、系统测试、
VW
转载 2017-10-19 15:24:16
3225阅读
1、集成模型 组装训练好的模型就像编写ensemble_model一样简单。它仅采用一个强制性参数,即经过训练的模型对象。此函数返回一个表,该表具有k倍的通用评估指标的交叉验证分数以及训练有素的模型对象。使用的评估指标是:分类:准确性,AUC,召回率,精度,F1,Kappa,MCC回归:MAE,MS
转载 2020-10-11 20:25:00
722阅读
2评论
一、场景需求解读 在现实场景中,我们经常会遇到这样一个问题,即某篇论文的结果很棒,但是作者
转载 2022-08-01 13:49:59
1923阅读
LSTM网络结构  long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。   LSTM也有与RNN相似的循环结构,但是循环模块中不再是简单的网络,而是比较复杂的网络单元。LSTM的循环模块主要有4个单元,以比较复杂
转载 2023-09-23 13:11:12
243阅读
        概念模型就是在了解了用户的需求,用户的业务领域工作情况以后,经过分析和总结,提炼出来的用以描述用户业务需求的一些概念的东西。
原创 2023-11-07 14:24:20
152阅读
目录Transformer1. 前言2. Transformer详解3. 总结2.1 Transformer整体结构2.2 输入编码2.3 Self-Attention2.4 Multi-Head Attention2.5 位置编码2.6 残差结构2.7 解码器结构2.8 The Final Linear and Softmax Layer2.9 损失函数3. 总结4. 相关参考资料Transfo
转载 4月前
53阅读
模型是关于模型模型。这是特定领域的模型,定义概念并提供用于创建该领域中的模型的构建元素。例如,可以将 SPEM 视为流程工程元模型。   四层元模型体系结构   采用元模型驱动的体系结构对于企业建模有重要价值,它解决了产品数据一致性与企业信息共享问题。元建模理论是从80年代后期发展起来的,虽然起步晚,但发展速度很快。到目前为止,为了不同的目的,已经定义了很多元元模型和元模型,例如最早由 EI
目录1. DNN-HMM语音识别系统2. 深度神经网络前馈神经网络FNN卷积神经网络CNNCNNTDNN循环神经网络RNNLSTM混合神经网络3. 总结4. 作业代码 1. DNN-HMM语音识别系统 DNN-HMM语音识别系统的训练流程是在我们上一节所学的GMM-HMM语音识别系统的基础上,加上了对齐和DNN训练的方式。其流程图如下图所示:      2. 深度神经网络 首先来了解一些神经网络
U-GAT-IT论文主要贡献模型结构生成器判别器损失函数实验结果 论文主要贡献解决了无监督的图像翻译问题,当两个域的图像的纹理和形状差别很大时,现有的一些经典模型(CycleGan、UNIT、MUNIT、DRIT等)效果不佳,这些算法适用于两个域的差别不大时,如Photo2Vangogh和Vhoto2Portriat,而Cat2Dog和Selfie2Anime(自拍到漫画)效果不好,本文通过引入
  • 1
  • 2
  • 3
  • 4
  • 5