前言 膨胀就是对图中的每个像素取其核范围内最大的那个值,腐蚀就相反。这两个操作常用来突出显示图的某个高亮部分或者昏暗部分以及去噪。本文展示两个分别对图像进行膨胀和腐蚀的例子。膨胀和腐蚀函数 cvErode() 和 cvDilate() 函数原型:1 // 膨胀函数
2 void cvcvDilate (
3 IplImage *src, //
转载
2024-05-02 23:04:38
157阅读
形态学图像处理形态学是研究动植物形态(form)的科学。这里我们使用同一术语表示数学形态学的内容。数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:腐蚀和膨胀、开运算和闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等预备知识对一副二
转载
2024-07-31 19:47:54
42阅读
1 cl;
2 img_gray=imread('fupeng.jpg');
3 img_erzhi=imread('erzhi_fupeng.jpg');
4 imshow(img_gray)
5 figure,imshow(img_erzhi)
6 [m n]=size(img_gray);
7 img_gray_fu=zeros(m,n);
8 img_gray_peng=
转载
2020-09-10 15:15:00
651阅读
2评论
腐蚀:cvErode锚点:用于判断的中心点关心点:为0不关心,为1关心腐蚀的时候锚点对准图像的像素,这个像素的值取锚点和关心点中的最小值,注意都是和原图像对比,前面因腐蚀变化的点不影响后面腐蚀的点膨胀:cvDilate和腐蚀相反,取锚点和关心点中的最大值程序:代码:#include "cv.h"
#include "cxcore.h"
#include "highgu
原创
2014-08-14 17:02:58
1367阅读
腐蚀膨胀 (Erosion and Dilation) 是图像处理中常用的两种形态学操作,用于增强或改变图像中的特定特征。在本文中,我们将介绍腐蚀膨胀的基本概念和原理,并使用 Python 中的 OpenCV 库来实现这两种操作。
## 1. 腐蚀操作
腐蚀操作是指通过削弱或减小图像中物体的边缘,来达到去除噪声或者分离物体的目的。其基本原理是使用一个小的结构元素在图像上滑动,并将结构元素下的所
原创
2023-08-20 08:18:57
118阅读
Mat dilateimg; Mat element = getStructuringElement(MORPH_RECT, Size(3, 3)); dilate(canny, dilateimg, element); erode(dilateimg, dilateimg,element); im
原创
2022-05-29 01:17:54
170阅读
腐蚀与膨胀(Eroding and Dilating) 目标本文档尝试解答如下问题:如何使用OpenCV提供的两种最基本的形态学操作,腐蚀与膨胀( Erosion 与 Dilation):
erodedilate 原理 Note以下内容于Bradski和Kaehler的大作: Learning OpenCV . 形态学操作简单来讲,形态学操作就是基于形
形态学处理(一)1、腐蚀、膨胀操作 膨胀 简单来讲,膨胀操作就是选定窗口大小,然后在原图上滑动,窗口中心点的取值为窗口内所有像素点的最大值。下给出过程图,个人认为下图比上面的解释图更为通俗易懂。对单个像素的膨胀操作如下: (1)请把下图看做是方格纸,黑色部分也是,第一张图为对像素(1,1)进行膨胀操作,红色框为选取的核大小:(2)第二张图为对像素(2,2)进行膨胀操作
转载
2024-04-06 20:46:33
141阅读
一、图像腐蚀形态学是图像处理中常见的名词,图像处理的形态学基本属于数学形态学的范畴,是一门建立在格论和拓扑学基础上的图像分析学科。腐蚀操作是其中最基本的一种运算。 简单来说,腐蚀就是通过一个蒙版进行图像像素值的修改。针对某一像素点,以其为中心建立蒙版,蒙版中的最小值赋值给该像素点,这就实现了腐蚀操作;当处理二值化图像时,图像只有0和255的数值,如果某一灰度
转载
2024-01-15 00:34:45
128阅读
一、形态学操作就是基于形状的一系列图像处理操作。有很多的,这里先看最简单的操作。 膨胀与腐蚀(Dilation与Erosion)。能实现多种多样的功能,主要如下: 消除噪声,通过低尺寸结构元素的腐蚀操作很容易去掉分散的椒盐噪声点分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。寻找图像中
转载
2024-01-28 06:07:56
119阅读
图像腐蚀与膨胀概念:图片的腐蚀和膨胀是针对图片中白色部分(高亮部分)而言的,而不是黑色部分。腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。而膨胀就是将图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。1、膨胀:核心解读:膨胀就是求局部最大值的操作。区域B与区域A卷积,即是计算区域B覆盖的区域的像素点最大值(即白色),并且将这个最大值赋值给参考
转载
2024-04-09 07:25:18
57阅读
文章目录前言一、腐蚀1.概念2.算法的具体步骤3.举例4.python代码二、膨胀1.概念2.算法步骤3.举例4.C++代码5. 结果展示参考资料 前言 二值图像中一类主要处理是对提取的目标图形进行形态分析。形态学处理中最基本的是腐蚀和膨胀。 腐蚀和膨胀是两个互为对偶的运算。腐蚀的作用是将目标图像收缩,而膨胀是将图像扩大。 结构元素是指具有某种确定形状的基本结构元素,例如,一定大小的矩
转载
2024-07-31 15:19:50
43阅读
1、什么是膨胀与腐蚀 膨胀与腐蚀属于形态学范围,具体的含义根据字面意思来理解即可。但是更形象的话就是“增肥”与“减肥”。处理缺陷问题; + 腐蚀用来处理毛刺问题。 膨胀就是把缺陷给填补了,腐蚀就是把毛刺给腐蚀掉了。这里其实说的并不严谨,也是为了大家理解方便。下面我们就用实例来进行演示。2、形态学处理——膨胀程序实现: 毛刺。而且还包含字体中还包含一些小的间隙(缺陷
转载
2024-08-12 10:14:51
63阅读
1、形态学概述形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有二种,他们是:膨胀与腐蚀(Dilation与Erosion)。 主要功能如下:消除噪声分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。寻找图像中的明显的极大值区域或极小值区域求出图像的梯度膨胀就是图像中的高亮部分(白色部分)进行膨胀,“
转载
2024-03-16 03:07:53
52阅读
形态学操作形态学操作就是基于形状的一系列图像处理操作。
OpenCV 为进行图像的形态学变换提供了快捷、方便的函数。
最基本的形态学操作有二种,他们是:膨胀与腐蚀 (Dilation 与 Erosion)。膨胀与腐蚀能实现多种多样的功能,主要如下:消除噪声分割 (isolate) 出独立的图像元素,在图像中连接 (join) 相邻的元素。寻找图像中的明显的极大值区域或极小值区域求出图像的梯度腐蚀和
转载
2024-04-25 09:43:42
29阅读
图像的膨胀(dilation)和腐蚀(erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域.其中膨胀类似与 '领域扩张' ,将图像的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大.腐蚀类似 '领域被蚕食' ,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小.1. 图像膨胀膨胀的运算符是“⊕”,其定义如下: 注释:0:黑色,1: 白
转载
2023-11-24 02:37:53
286阅读
腐蚀和膨胀是最基本的形态学操作,腐蚀和膨胀都是针对白色部分(高亮部分)而言的。膨胀就是使
原创
2022-06-01 17:36:43
860阅读
转载
2018-09-18 16:53:00
155阅读
int main(){ Mat image = imread("test.jpg"); namedWindow("膨胀前"); namedWindow("膨胀后"); imshow("膨胀前", image); //获取自定义核 Mat element =
原创
2022-08-16 16:55:59
324阅读
图像的腐蚀膨胀作者:Cabin_V作为学习图像处理的学生,需要不断学习相关知识,我在课余时间将一些分析总结和学习的笔记写成博客来记录自己的学习过程,也希望能与大家一起交流。关于图像处理入门和进阶分类问题,我根据《数字图像处理》这本书(本科期间上课使用),将出现的内容划分为入门,其他常用的知识划分为进阶。转载务必说明出处! 文章目录图像的腐蚀膨胀图像腐蚀与膨胀区别作用API说明getStructur