python学习笔记https://github.com/lilang-jianxin/python-BasicProgramming
https://github.com/lilang-jianxin/Python-CoreProgrammingpython使用的版本及开发工具python2和python3语法差别不大,设计思想差不多的。但是官方大概在2020年的时候会停止对python2
序列类型# 所谓序列,指的是一块可以存放多个值的连续内存空间,可以通过每个值所在的编号(索引)去访问他们1.列表 list 定义 [] 可变类型 #举例说明:list1 = ['大盘鸡', '辣子鸡', '羊肉串', '小白菜', '辣椒炒肉', '土豆丝']
print(type(list1))列表名.方法名() 查 直接根据索引查找单个值print(list1[5])切片 查找列表当中的一段
1、回归模型1.1 MSE(均方误差)MSE是Mean Square Error的缩写,其计算公式如下:从计算公式可以看出,MSE越小(理论最小值为0),说明拟合得越好。一些机器学习模型的损失函数也是这样计算的,因为它易于求导,进而便于使用梯度下降法进行参数优化。1.2 RMSE(均方根误差)RMSE是Root Mean Square Error的缩写,其计算公式如下:由于MSE的结果总是非负的,
转载
2024-10-18 13:58:35
477阅读
MAE、MSE、RMSE、MAPE计算方式
原创
2024-05-23 00:57:35
292阅读
MAE和MSE的关系 MSE \[ MSE=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \] MAE \[ M A E=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\r ...
转载
2021-10-27 19:04:00
1409阅读
2评论
## Python数据集MAE MSE科普
在数据分析和机器学习中,我们经常会使用MAE(Mean Absolute Error)和MSE(Mean Squared Error)这两个指标来衡量模型的准确性。这两个指标可以帮助我们评估模型在训练和测试数据集上的表现,从而帮助我们选择最佳模型。
### MAE和MSE的定义
- **MAE**:平均绝对误差,是预测值与真实值之间差值的绝对值的平
原创
2024-04-25 05:19:12
172阅读
``` def mean_squared_error(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred) y_true = K.cast(y_true, y_pred.dtype) return K.mean(K.square(y_pred - y_true), axis=-1) def mean_abs
转载
2019-10-21 17:54:00
168阅读
2评论
## 如何使用Python实现MAE计算
### 1. 流程概述
在这个教程中,我将教你如何使用Python计算Mean Absolute Error(MAE),即平均绝对误差。我们将通过以下步骤来实现这一目标:
| 步骤 | 操作 |
|------|------|
| 1. | 导入必要的库 |
| 2. | 准备数据 |
| 3. | 计算MAE |
### 2. 具体步骤
原创
2024-04-20 07:08:44
143阅读
# 如何实现 Python MAE 计算
## 1. 总览
首先,让我们了解一下如何在 Python 中计算 MAE(Mean Absolute Error)。MAE 是一种用于衡量预测值与实际值之间差异的指标,通常用于评估模型的性能。
下面是实现 Python MAE 计算的步骤:
```mermaid
journey
title 教会小白如何实现 Python MAE 计算
原创
2024-04-26 06:05:58
136阅读
MAML论文阅读笔记--回归实验1.背景2.算法3.回归实验3.1 问题分析3.2 参数设置3.3 实验结果 1.背景 MAML是元学习领域的一篇经典文章。元学习(Meta-learning)与机器学习算法不同,不是先人为调参,然后在特定训练任务下训练模型,而是希望模型获取一种学会学习调参的能力,使其在新任务的小样本集上快速学习新任务。所以,深度学习模型有哪些需要人为确定的元素(初始化参数、网
转载
2024-08-31 09:48:07
257阅读
由于原博客在word里编辑,插入了很多Mathtype公式,而不支持Mathtype,转换格式出现了很多麻烦和排版混乱,故此博客部分采用截图展示。原理程序及结果Python 程序:(1)LMS算法 (2)求MSE 结果:分析图1.1上图是滤波器输入信号,即滤波前含噪声的接收信号x(n)波形,从图中我们可以看出,输入信号中的噪声引起波形的随机性,对于有效信号s(n)的原波形造成了不同程度的波动,要想
转载
2023-10-02 06:21:00
271阅读
mae():平均绝对误差mse:均方误差sse:误差平方和
转载
2019-03-10 23:33:00
742阅读
2评论
Pytorch 代码重要内容1、pytorch-msssimpip install pytorch-msssim 安装使用ssim计算结构相似性损失2、torchtorch.seed() 设置随机种子后,每次运行文件输出结果都一样,而不是每次随机函数生成的结果一样
torch.manual_seed() 设置CPU生成随机数的种子,方便下次复现实验结果
torch.squeeze()
转载
2024-08-21 11:54:55
33阅读
# 理解MAE计算及其在Python中的应用
在机器学习模型的评估中,了解各种评估指标至关重要。均绝对误差(Mean Absolute Error,MAE)是一种常用的回归模型评估指标,它可以帮助我们量化预测值与实际值之间的差异。本文将详细介绍MAE的计算方法,并提供一个实际的Python示例,帮助读者深入理解这一概念。
## MAE的定义
MAE计算公式如下:
\[
MAE = \fra
原创
2024-10-12 04:34:25
66阅读
文章目录一、函数(1) 什么是函数(2) 定义函数(3) 调用函数二、模块(1) 什么是模块(2) 导入整个模块(3) 从模块中导入函数(4) 指定别名 一、函数(1) 什么是函数函数是可重复使用的,用来实现单一,或相关联功能的代码段。函数能够很好地划分和组织程序的执行逻辑。通过使用函数,可以将原本复杂冗长的程序划分为依次调用的程序块。函数能提高应用的模块性,和代码的重复利用率。通过前面的学习,你
# Python 中的 MAE 计算详解
在机器学习和数据科学中,模型性能的评估是至关重要的。而均绝对误差(Mean Absolute Error, MAE)是一种常用的回归性能指标,用来衡量模型预测值与真实值之间的误差。本文将介绍 MAE 的定义、计算方法,并通过 Python 代码示例进行演示。
## 什么是 MAE?
MAE 是指预测值与真实值差的绝对值的均值,数学公式如下:
$$
原创
2024-09-14 03:34:56
324阅读
# 实现Python MAE计算函数
## 1. 整件事情的流程
为了实现Python的MAE(Mean Absolute Error)计算函数,我们需要按照以下步骤进行操作:
```mermaid
erDiagram
MAE_CALCULATION {
+ 输入真实值和预测值
+ 计算绝对误差
+ 计算平均绝对误差
+
原创
2024-03-17 03:33:28
86阅读
# 如何在Python中计算均方误差(MSE)
均方误差(Mean Squared Error,MSE)是机器学习中一种常用的损失函数,它用于评估模型预测值与真实值之间的差异。在这篇文章中,我将指导你如何在Python中计算MSE。我们将分为几个步骤进行,这些步骤将帮助你全面理解MSE的计算过程。
## 流程概述
下面是计算MSE的基本流程:
| 步骤 | 描述 |
|------|---
原创
2024-10-10 03:47:26
140阅读
1.常见误差计算方法:SSE(和方差、误差平方和):The sum of squares due to errorMSE(均方差、方差):Mean squared errorRMSE(均方根、标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freed
1、均方误差(L2损失)均方误差(MSE)是最常用的回归损失函数,计算方法是求预测值与真实值之间距离的平方和,公式如下:下图是MSE函数的图像,其中目标值是100,预测值的范围从-10000到10000,Y轴代表的MSE取值范围是从0到正无穷,并且在预测值为100处达到最小。通过数值模拟,平均绝对值误差的形状如下:2、平均绝对值误差(L1损失)平均绝对误差(MAE)是另一种用于回归模型的损失函数。
转载
2023-12-18 13:00:20
636阅读