1. 什么是 Ribbon?Spring Cloud Ribbon 是一套实现客户端负载均衡的工具。注意是客户端,当然也有服务端的负载均衡工具,我们后面再介绍。可以认为 Ribbon 就是一个负载均衡器(Load Balancer,简称LB,即:low比~~)。负载均衡就是将用户的请求平摊的分配到多个服务上,从而达到系统的高可用。简单来说,Ribbon 的主要功能是提供客户端的软件负载均衡算法,将
LSTM (long short-term memory) 长短期记忆网络,具体理论的就不一一叙述,直接开始 流程一、数据导入二、数据归一化三、划分训练集、测试集四、划分标签和属性五、转换成 LSTM 输入格式六、设计 LSTM 模型6.1 直接建模6.2 找最好七、测试与图形化展示八、保存模型到 pkl 文件九、模型调用9.1 Python 模型调用端9.2 Java 程序调用端 一、数据导入正
转载
2023-09-08 23:56:36
221阅读
??????欢迎来到本博客❤️❤️❤️??? ?作者研究:???主要研究方向是电力系统和智能算法、机器学习和深度学习。目前熟悉python网页爬虫、机器学习、群智能算法、深度学习的相关内容。希望将计算机和电网有效结合!⭐️⭐️⭐️ ???本文目录如下:⛳️⛳️⛳️目录1 概述2 预测模型原理3 运行结果4 参考文献5 Matlab代码实现1 概述电力系
转载
2024-01-06 21:17:24
168阅读
赛题名:大数据时代的Serverless工作负载预测 背景:云计算时代,Serverless软件架构可根据业务工作负载进行弹性资源调整,这种方式可以有效减少资源在空闲期的浪费以及在繁忙期的业务过载,同时给用户带来极致的性价比服务。在弹性资源调度的背后,对工作负载的预测是一个重要环节。如何快速感知业务的坡峰波谷,是一个实用的Serverless服务应该考虑的问题。 任务:传统的资源控制系统以阈值为决
转载
2024-01-09 14:42:26
179阅读
目录前言课题背景和意义实现技术思路 一、电力负荷预测二、典型负荷预测算法实现效果图样例最后前言 ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为
目录一、问题背景二、数据集介绍2.1 提取Area1用电负荷2.2 读入2014年Area1指定列负荷数据2.3 探查Area1用电负荷数据分布2.4 两地2014年负荷数据可视化2.4.1 全年负荷率可视化2.4.2 日最大负荷可视化2.4.3 日最低负荷可视化2.4.4 日平均负荷可视化一、问题背景 短期负荷预测是电力系统
转载
2024-01-25 21:19:38
147阅读
?1 概述前馈神经网络的输出只依赖当前输入,但是在文本、视频、语音等时序数据中,时序数据长度并不固定,前馈神经网络的输入输出维数不能任意更改,因此难以适应这类型时序数据的处理。短期电力负荷预测的输入与输出均为时间序列,其本质仍是基于先前元素的序列预测问题,为此需要采用与前馈神经网络不同的方法,进行短期电力负荷预测。 循环神经网络具有记忆功能,可提升网络性能。与前馈神经网络相比,循环神经网络具备可同
转载
2024-02-02 10:27:59
123阅读
?1 概述参考文献: 负荷预测是电力系统规划和运行中的重要工作之一,它决定了发电、输电和电量的分配,在一定规划期内负荷与用电量的大小决定了电力系统的发展规划和发展速度。 目前,负荷预测方法很多,其中灰色预测是一种比较有效的方法,而且广泛用于中长期负荷预测中。本文对灰色系统GM(1,1)预测模型及其在负荷预测中的应用进行讨论,并且对如何提高模型的预测精度进行分析。?2 运行结果
转载
2024-08-29 18:01:49
137阅读
电力负荷预测电力分析与预测一.导入数据二.数据的预处理三.基本描述性统计四.构建特征,模型准备①系统聚类法②K-means聚类五.构建特征,建立预测模型①预测未来一天,各时段的电力负荷②预测未来几天总体电力负荷 电力分析与预测根据提供的客户的20天的分时段数据,进行分析:要求1:根据数据对客户进行聚类分析;要求2:根据数据对客户进行负荷预测。一.导入数据# 安装库专用
# 通过如下命令设定镜像
转载
2023-11-30 16:09:42
92阅读
之前写项目的时候,leader让我试着做lstm负荷预测。我想这玩意不是手到擒来吗?还至于买别人公司的产品做什么。我上来就是一顿操作猛如虎。不过结果还好了70%以上的准确率是有的,不过我觉得再微调一下会更好。
原创
2024-03-22 18:13:46
49阅读
?1 概述电力负荷,又称“用电负荷" 电能用户的用电设备在某一时刻向电力系统取用的电功率的总和。电力负荷预测的实质是从已知的电力系统、经济、社会、气象等情况出发,根据历史负荷变化规律,对未来某个时刻或时段做出预先估计和推测。电力负荷预测影响着电力系统的管理和运行,是电力系统制定发电计划、交易计划、调度计划等的重要依据。对电力负荷预测进行分类依据的划分标准有很多,预测时间周期是较为常见的一种,可以将
转载
2023-11-06 16:39:43
188阅读
目录1 概述2 基于神经网络的负荷预测(Matlab实现)2.1 代码2.2 结果 2.3 回归树模型的进一步改进 3 基于神经网络的价格预测(Matlab代码实现) 4 阅读全文(Matlab代码)1 概述这个例子演示了用MATLAB建立一个短期电力负荷(或价格)预测系统。两个非线性回归模型(神经网络和袋式回归树)被校准,以预测给定温度预测、假日信息和历史
转载
2024-07-31 20:37:26
99阅读
LSTM是RNN的改进型,传统RNN模型会随着时间区间的增长,对早期的因素的权重越来越低,有可能会损失重要数据。而LSTM模型通过遗忘门、输入门、输出门三个逻辑,来筛选和保留数据。 原理详解可以参考如何从RNN起步,一步一步通俗理解LSTM这个博主讲的非常通俗易懂,本文主要是项目实操。实验环境Windows11、python3.8、Keras框架、Tensorflow实验目的使用新冠疫情历史每日新
转载
2023-10-07 13:34:46
681阅读
传统的神经网络一般都是全连接结构,且非相邻两层之间是没有连接的。对输入为时序的样本无法解决,因此引入了RNN(可以查看具体的RNN含义和推导),但是会存在梯度消失(不同的隐层之间会存在过去时刻对当前时刻的影响因素,但随着时间跨度的变大这种影响会削弱)。因此引入LSTM1 LSTM算法小结 LSTM:是对RNN算法的改
转载
2023-12-19 21:28:02
55阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。 它可以是秒、分钟、小时、天、周、月、年。 未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,
转载
2023-08-12 20:12:01
22阅读
一、lstm介绍长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题,目前比较流行。二、理论介绍2.1长短时记忆网络的思路:原始 RNN 的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。再增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。上图是lstm的
转载
2023-08-30 10:44:42
183阅读
目录1 概述2 算例3 Python代码实现4 结果 附件1
原创
2022-09-04 00:37:24
2336阅读
本文使用LSTM和Bi-LSTM,以电力负荷预测为例对比了两者的预测性能,其中将电力
原创
2022-08-16 07:45:42
506阅读
# 短期Python负荷预测
## 引言
在现代社会,电力的需求日益增长,准确的负荷预测对电力系统的安全和稳定运行至关重要。短期负荷预测通常是指对未来几小时或几天内电力需求的预测。本文将介绍如何使用Python进行短期负荷预测,并给出简单的代码示例,帮助你理解这一过程。
## 负荷预测的重要性
准确的负荷预测能够帮助电力公司更好地安排发电计划,避免电力供应不足或浪费。通过预测,能确保电力系
# 电力负荷预测的科普与实践
在现代社会,电力作为一种重要的能源,广泛应用于工业、商业和日常生活中。为了确保电力供应的稳定性与安全性,电力负荷预测变得尤为重要。预测未来的电力需求可以帮助电力公司规划电网的建设和运营,实现经济高效的电力管理。本文将介绍电力负荷预测的基本概念,并提供一个简单的Python示例,帮助读者更好地理解这一主题。
## 电力负荷预测的基本概念
电力负荷预测是通过历史电力