机器学习总结之逻辑回归Logistic Regression逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法。简单的说回归问题和分类问题如下:回归问题:预测一个连续的输出。分类问题:离散输出,比如二分类问题输出0或1.逻辑回归常用于垃圾邮件分类,天气预测、疾病判断和广告投放。一、假设函数    因为是一个分类问
转载 2024-06-12 21:31:02
181阅读
1,什么是逻辑回归(Logistic Regression)逻辑回归用于二分分类问题,二分分类问题的标签值只有两个,比如 对于一首歌喜欢或者不喜欢;对于一件商品,喜欢或者不喜欢;对于某个考生,考试成绩 及格或者不及格。其思想也是基于线性回归(Logistic Regression属于广义线性回归模型),分类算法用到了逻辑函数 ,因为逻辑函数的参数又用到了线性回归函数,所以才被称为逻辑回归逻辑函数
一、python逻辑回归简单案例1. 加载相关库2. 构造数据和特征,并查看散点图
转载 2022-11-30 21:31:03
274阅读
logistic回归是一种广义的线性回归,通过构造回归函数,利用机器学习来实现分类或者预测。原理上一文简单介绍了线性回归,与逻辑回归的原理是类似的。预测函数(h)。该函数就是分类函数,用来预测输入数据的判断结果。过程非常关键,需要预测函数的“大概形式”, 比如是线性还是非线性的。本文参考机器学习实战的相应部分,看一下数据集。// 两个特征-0.017612 14.053064 0-1.395634
前言上面我们介绍了线性回归, 岭回归, Lasso回归, 今天我们来看看另外一种模型—"逻辑回归". 虽然它有"回归"一词, 但解决的却是分类问题目录1. 逻辑回归2. 优缺点及优化问题3. 实际案例应用4. 总结正文在前面所介绍的线性回归, 岭回归和Lasso回归这三种回归模型中, 其输出变量均为连续型, 比如常见的线性回归模型为:其写成矩阵形式为:现在这里的输出为连续型变量, 但是实际中会有"
 主要参照统计学习方法、机器学习实战来学习。下文作为参考。第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y‘的误差来求得模型参数。我们看到这里的模型的值Y是样本X各个维度的Xi的线性叠加,是线性的。Y=WX (假设W>0),Y的大小是随
实验目的:掌握线性回归基本原理和内容。掌握逻辑回归基本原理和内容。能够分析问题,选择合适的线性模型解决问题。能够利用线性回归逻辑回归建模,建立相关模型,并评价模型的好坏。实验内容:1.预测鲍鱼的年龄。此案例所用数据来自UCI数据集,记录鲍鱼的一些相关属性,请根据这些属性构建一个模型来预测鲍鱼的年龄。基本要求:1、根据 '性别','长度','直径','高度','整体重量','肉重量','内脏重量'
文章目录一、二分类问题(方法:逻辑回归)1.数据预处理:生成虚拟变量2.求解逻辑回归3.判断依据4.逐步回归的设置5.假如自变量有分类变量怎么办?二、多分类问题1.方法:逻辑回归2.方法:Fisher线性判别分析2.1.简介2.2.核心问题:找到线性系数 三、逻辑回归预测结果太差怎么办? 一、二分类问题(方法:逻辑回归)对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。把y看成事件发生
转载 2023-06-19 05:40:48
167阅读
逻辑回归1、  总述  逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值。2、  基本概念  回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内在分布规律。单个样本表示成二维或多维向量,包含一个因变量Y和一个或多个自变量X。回归分析主要研究当自变量变化时,因变量如何变化,数学表示成Y=f(X),其中函数f称为回归函数(re
文章目录一、逻辑回归二、算法原理介绍三、代码实现3.1 sklearn-API介绍3.2 sklearn-代码实现3.3 python手写代码实现四、总结五、算法系列 一、逻辑回归逻辑回归也称作logistic回归分析,是一种广义的线性回归分析模型,属于机器学习中的监督学习。其推导过程与计算方式类似于回归的过程,但实际上主要是用来解决二分类问题(也可以解决多分类问题)。通过给定的n组数据(训练集
1.逻辑回归概念逻辑分类(Logistic Classification)是一种线性模型,可以表示为,w是训练得到的权重参数(Weight); x是样本特征数据(逻辑回归一般要求需要对x进行归一化处理,常见的做法有最大最小值归一化:(x-min(x))/(max(x)-min(x)),0均值标准化:(x-μ)/δ); y是对应的分类变量(注意这里的0、1、2、3只是表示对应的标称分类,并不表示具体
Step1:函数库导入## 基础函数库import numpy as np import pandas as pd## 绘图函数库import matplotlib.pyplot as pltimport seaborn as sns本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢
最近正在做的项目正好利用到了逻辑回归,所以正好系统的学习了下,本篇博文把自己的学习笔记、项目思路及代码都记录下来。它的计算原理很多网站和书籍都有介绍,就不在这班门弄斧了,主要还是记录自己如何实现一、逻辑回归简介 Logistic Regression算法是通过训练数据中的正负样本,学习样本特征和样本标签的假设函数,它是典型的线性分类器,是广义线性模型的一种。它具有很强的可解释性,应用也非常广泛。如
宏基因组拼接Metagenome assembly已经公开了许多用于从序列读长库中重建微生物群落组成的方法。选择“最佳”是一项艰巨的任务,主要取决于研究的目的。宏基因组从头/无参(de novo)组装/拼接在概念上类似于全基因组组装。de Bruijn图方法目前是一种非常流行的宏基因组装方法。对于单草图的基因组拼接,通过将每个测序读长分解为固定长度k的重叠子序列来构建de Bruijn图。这组重叠
机器学习算法笔记(二):逻辑回归在学习机器学习的过程中,结合数学推导和手写实现,可以加深对相关算法的认识。本部分教程将基于python实现机器学习的常用算法,来加强对算法的理解以及coding能力,仅供学习交流使用,请勿随意转载。本篇继续逻辑回归算法的学习,全文分为三个部分:数学推导python实现逻辑回归优缺点分析一、逻辑回归的数学推导 逻辑回归(LogisticRegression)名为回归
Python实现逻辑回归问题怎样快速实现用Python实现逻辑回归,怎样优化逻辑回归概述这里我采用了百度的AIstudio平台,因为AIstudio预装了python3.7版本,还有其他Python必要的库,比如说Numpy库,matplotlib库,这些库在机器学习中都比较常用。 我代码主要逻辑先是读取文件中的数据,第二步是数据处理,第三步就是逻辑回归运算,第四步就是画图 我多使用了矩阵操作,
数据我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。导入数据并查看import numpy as np import pandas
用自己的话描述一下,什么是逻辑回归,与线性回归对比,有什么不同?逻辑回归是预测结果是界于0和1之间的概率,可以适用于连续性和类别性自变量,容易使用和解释。逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两
转载 2023-08-09 15:32:04
118阅读
背景与原理:线性回归可以实现对连续结果的预测,但是现实生活中我们常见的另一种问题是分类问题,尤其是二分类问题,在这种情况下使用线性回归就不太合适了,我们实际上需要计算出的是一个在$[0,1]$之间的概率来告诉我们某样本属于某一类的概率,因此逻辑回归应运而生。一般的逻辑回归就是在线性回归的基础上嵌套一个逻辑函数,把线性回归的结果转换成概率。即我们定义$h_{\theta}(X)=P(y=1|X,\t
转载 2022-03-27 16:50:00
190阅读
1、引言本文涵盖主题:XGBoost 实现回归分析,包括数据准备、模型训练和结果分析三个方面。 本期内容『数据+代码』已上传百度网盘。有需要的朋友可以关注公众号【小Z的科研日常】,后台回复关键词[xgboost]获取。2、数据准备本例中,我们使用的是1973年至2016年间美国燃烧煤炭发电产生的二氧化碳排放量数据集。数据帧包含需要分隔为年和月列的列“YYYYMM”。在此步骤中,我们还将删
  • 1
  • 2
  • 3
  • 4
  • 5