导语:支持向量机(Support Vector Machine, SVM)是一种二分类的广义线性分类器,属于监督学习。但是进行多次二分类也可以解决多分类问题,但本质上还是...
原创 2021-06-18 16:23:17
534阅读
SVM(support vector machine)支持向量机:线性分类:先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样:这种方法被称为:线性分类器,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。也就是说,数据不总是二维的,比如,三维的超平面是面。但是有个问题:上述两种超平
SVM1由来利用一根直线或者一个超平面把数据按照某种规则区分开来2最大间隔分类器上面我们推导出了间隔的表达式,自然的,我们想让数据点离超平面越远越好:3核函数在前面的讨论中,我们假设数据集是线性可分的。但是现实任务中,可能并不存在一个超平面将数据集完美得分开。这种情况下,我们可以通过将原始空间映射到一个高维空间,如果高维空间中数据集是线性可分的,那么问题就可以解决了。这样,超平面变为:可见,需要计
原创 2018-09-11 16:49:19
2048阅读
看《机器学习(西瓜书)》可以理解SVM的推导过程,重点是看附录理解“对偶问题”,以及核函数的定义。SVM代码主要是SMO算法的实现,主要参考《统计学习方法》,即如何选择pair进行优化,收敛后即可得到α、w、b代码:# _*_ coding:utf-8 _*_ from numpy import * def loadDataSet(filename): #读取数据 dataMat=[]
转载 2023-09-22 12:40:51
129阅读
SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的:支持向量机通俗导论(理解SVM的3层境界):JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了。。强烈推荐。还有一个比较
                                 &n
SVM(support vector machine)支持向量机是一种监督学习算法,可用于分类、回归、离群点检测。引入软间隔因为:(1)不是任何任务都能找到好的核函数使其线性可分;(2)就算实现(1),但也无法判断模型线性可分是不是过拟合造成 。支持向量(support vector):到超平面最近的样本点间隔(margin):各异类支持向量到超平面的距离之和。硬间隔:要求所有样本点都满
转载 2023-12-05 02:22:35
87阅读
数据可视化上篇文章介绍了线性不可分和线性可分两种情况,以及五种核函数,线性核函数(linear),多项式核函数(poly),高斯核函数(rbf),拉普拉斯核函数(laplace)和Sigmoid核函数,基于《机器学习实战》的数据,我们使用各种核函数对数据尝试分类,下面看一下效果如何.首先看一下我们的数据集:       &nbs
 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。    其具有以下特征:    (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般
转载 2023-10-07 11:26:22
111阅读
1 简介基于数据的机器学习就是由观测样本数据得出目前尚不能通过原理分析得到的规律,利用其对未来数据进行预测.神经网络以其优越的函数逼近性能广泛用于建立时间序列过去与未来数据之间某种确定的映射关系,实现预测.首先分析了以经验风险最小化为准则的神经网络的局限性,以及针对此提出的结构风险最小化准则的优点;其次引出支持向量机;最后利用支持向量机对用电数据做较准确的多步预测.​2 部分代码clear&nbs
原创 2022-01-06 22:38:40
764阅读
支持向量机算法(SVM)实战支持向量机(Support Vector Machine,SVM)是一种常用于分类和回归问题的经典机器学习算法。SVM基于间隔最大化的思想来进行分类,即找到一个分类边界,使得不同类别的数据点到该分类边界的距离最大化。这个分类边界被称为“决策边界”或“超平面”。在本文中,使用Python和sklearn库来训练一个SVM分类器,并对鸢尾花数据集进行分类。加载数据集首先需要
本文主要基于李航《统计学习方法》与周志华《机器学习》完成,加入了若干个人推导与注解,文后附Python3源码。跟我推导完,相信你一定会有收获。目录初识SVM第一重 · 线性硬间隔支持向量机第二重 · 线性软间隔支持向量机第三重 · 非线性支持向量机迈门利器 · 序列最小最优化算法迈门演示 · Python源码参考文献初识SVM支持向量机(Support Vector Machine,SVM)是ML
目录1.SVM作用:2. 不适定性问题2.1 什么是不适定性问题2.2 怎样解决不是定性问题?3. SVM 算法解决不适定性问题的具体过程3.1 Hard-margin SVM(1)什么是hard-margin SVM(2)hard-margin SVM 目标函数及约束条件的推导过程3.2 Soft-margin SVM(1)Soft-SVM的决策边界VS Hard-SVM的决策边界(2) 数据线
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘chinese’:[95,69,91,52,60,80,78,81,96,82],‘rank’:[0...
原创 2021-06-10 17:30:13
1074阅读
支持向量机(Support Vector Machine,SVM)是一种用于分类和回归任务的机器学习算法,其目标是找到一个超平面,将不同类别的数据分开。以下是使用Python中的sklearn库实现支持向量机算法的基本示例:from sklearn.datasets import load_iris from sklearn.model_selection import train_test_sp
原创 2023-09-02 22:00:49
510阅读
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘
原创 2022-03-01 10:24:46
2430阅读
前言本文开始主要介绍一下SVM的分类原理以及SVM的数学导出和SVMPython上的实现。借鉴了许多文章,会在后面一一指出,如果有什么不对的希望能指正。 一、 SVM简介首先看到SVM是在斯坦福的机器学习课程上,SVM是作为分类器在logisticregression的基础上引出的。其学习方法是把数据映射到一个高维空间上,使数据变稀疏,比较容易找到一个分割面来将数据分类,而这个高维的
Python svm.LinearSVR方法代码示例 https://vimsky.com/examples/detail/python-method-sklearn.svm.LinearSVR.html ...
转载 2021-07-15 17:18:00
125阅读
2评论
专栏推荐正文我们构造svm模型的时候是有如下的参数可以设置的。SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=' ovr ', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_st
二、SVM的求解过程1、对问题的简单求解其实上一章中的结果,已经是一个可求解的问题了,因为现在的目标函数是二次的,约束条件是线性的,所以它是一个凸二次规划问题,只要通过现成的QP包就能解决这个二次规划问题。 2、求解方式转换由于这个结构具有特殊性,所以可以通过拉格朗日的对偶性( Lagrange Duality),将原问题转到对偶问题进行优化(两者等价)。 这样是有两个优点:一是对偶问题更容易求
  • 1
  • 2
  • 3
  • 4
  • 5