文章目录1.Canny算法的介绍2.Canny算法流程完整代码 1.Canny算法的介绍Canny算法是一种边缘检测算法,它是由John Canny在1986年提出的。 Canny边缘检测是从不同视觉对象中提取有用的结构信息并大大减少要处理的数据量的一种技术,目前已广泛应用于各种计算机视觉系统。2.Canny算法流程Canny边缘检测算法是由以下步骤组成的: 1.图像降噪。梯度算子可以用于增强图
转载
2024-04-01 13:59:31
50阅读
在上一节中都是采用一阶差分(导数),进行的边缘提取。 也可以采用二阶差分进行边缘提取,如Laplacian算子,高斯拉普拉斯(LoG)边缘检测, 高斯差分(DoG)边缘检测,Marr-Hidreth边缘检测。这些边缘提取算法详细介绍如下: 1. Laplacian算子 Laplacian算子采用二阶导数,其计算公式如下:(分别对x方向和y方向求二阶导数,并求和)&nbs
转载
2023-08-10 04:49:29
317阅读
一、简介在图像处理中,边缘提取是一种基础的图像处理算法,常用于图像识别以及跟踪领域,为进一步分析和理解图像做准备,下面介绍两种不同的图像边缘检测方法。二、边缘检测方法本文介绍的边缘检测方法包括直接使用高斯滤波器检测和Canny边缘检测两种方法。1.高斯滤波器提取边缘特征高斯滤波是一种线性平滑滤波,可以用于消除图像中的高斯噪声。简言之,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由
转载
2023-09-26 17:17:00
192阅读
实验一 边缘提取一、 实验目的 利用opencv编写实现下图的边缘提取二、实验内容 利用opencv python实现边缘提取 (1)在python安装opencv库 如果安装了python,直接安装:pip install opencv-python 测试是否安装成功:python命令行输入import cv2,没有报错即成功 (2)编写代码 代码如下:import cv2
#导入图片
im
转载
2023-10-04 20:15:18
167阅读
图像滤波 滤波实际上是信号处理里的一个概念,而图像本身也可以看成是一个二维的信号。其中像素点灰度值的高低代表信号的强弱。 高频:图像中灰度变化剧烈的点。 低频:图像中平坦的,灰度变化不大的点。 根据图像的高频与低频的特征,我们可以设计相应的高通与低通滤波器,高通滤波可以检测图像中尖锐、变化明显的地方;低通滤波可以让图像变得光滑,滤除图像中的噪声。 下面我们来看一下OpenCV中的一些滤
转载
2024-05-28 09:00:45
32阅读
Canny算子是John.F.Canny于20世纪80年代提出的一种多级边缘检测算法。该算子最初的提出是为了能够得到一个最优的边缘检测,即:检测到的边缘要尽可能跟实际的边缘接近,并尽可能的多,同时,要尽量降低噪声对边缘检测的干扰。是一个很好的边缘检测器,很常用也很实用的图像处理方法。总共可以分为五步:高斯模糊GaussianBlur。将输入的彩色图像进行高斯模糊来去掉噪声灰度转换cvtColor。
转载
2024-08-14 11:59:20
117阅读
一、边缘提取常用算子1、sobel算子边缘检测//Sobel梯度算子
void imageSobel(){
const char* name = "lena.tif";
IplImage* image = cvLoadImage(name, CV_LOAD_IMAGE_GRAYSCALE);
if (image == NULL){
printf("image load failed.\n
转载
2024-06-29 20:23:56
63阅读
前言耐心看完一定会有收获的,大部分内容也会在代码中体现,结合理论知识和代码进行理解会更有效。代码用opencv4.5.1(c++)版实现一、边缘检测算法边缘检测算法是指利用灰度值的不连续性质,以灰度突变为基础分割出目标区域。对铝铸件表面进行成像后会产生一些带缺陷的区域,这些区域的灰度值比较低,与背景图像相比在灰度上会有突变,这是由于这些区域对光线产生散射所引起的。因此边缘检测算子可以用来对特征的提
转载
2023-07-04 19:57:52
548阅读
OpenCV可以检测图像的主要特征,然后提取图像的特征,使其成为图像描述符。这些图像特征,也就是图像描述符,可以作为图像搜索的数据库。 个人感觉就是,和「以图搜图」有点像。 看了下面这个视频,或许你就能够明白了。 也是一个很搞笑的片段... / 01 / 特征检测算法这里简单介绍一下OpenCV常用的几种特征检测和提取算法。 
图像的边界信息一般通过灰度值突变来体现,所以图像边缘提取一般通过捕捉灰度突变的方法来实现,捕捉灰度突变可以通过求微分来实现 导数越大说明变化越大,边缘信号越强 1.Sobel算子 也叫离散微分算子,一阶微分算子,求导算子,先做高斯平滑在做微分求导 可以在各个方向上求图像的梯度 如水平方向 Gx=[-
原创
2021-05-25 22:15:25
962阅读
1. 创建轮廓 一般获取轮廓的步骤是提取边缘,边缘是一张图片中亮暗区域的过渡位置,它可以由图片梯度计算得出。图片梯度也可以表示为边缘幅度和边缘方向。通过选择那些有高的边缘幅值的像素点或者有特定边缘方向的像素点,区域内的轮廓可以提取出来。可以通过多种的方式以多种精度提取轮廓。像素精度提取边缘的方法 :使用 边缘滤波器 &
转载
2023-09-07 23:43:20
311阅读
Canny边缘检测算法 经典的Canny边缘检测算法通常都是从高斯模糊开始,到基于双阈值实现边缘连接结束。但是在实际工程应用中,考虑到输入图像都是彩色图像,最终边缘连接之后的图像要二值化输出显示,所以完整的Canny边缘检测算法实现步骤如下:1. 彩色图像转换为灰度图像2.  
转载
2023-08-08 13:17:27
385阅读
1.图像边缘填充1.1卷积边界问题图像卷积的时候边界像素不被卷积操作,原因在于边界像素没有完全跟kernel重叠,只有当3X3的滤波时候有一个像素的边缘没有被处理,5x5滤波的时候有两个像素边缘没有处理。1.2.处理边缘在卷积开始之前增加边缘像素,填充的像素值为0或者RGB黑色,比如3x3在四周各填充1各像素的边缘,这样就确保图像的边缘被处理,在卷积处理hi后再去掉这些边缘,openCV中默认的处
转载
2024-03-15 19:55:01
200阅读
OpenCV 学习(利用滤波器进行边缘提取)通过低通滤波器,我们可以将图像平滑,相反的,利用高通滤波器可以提取出图像的边缘。Sobel 滤波器Sobel 滤波器是一种有方向性的滤波器,可以作用在 X 方向或 Y 方向。 关于这种滤波器的理论介绍可以参考:https://en.wikipedia.org/wiki/Sobel_operator函数原型如下:void Sobel( InputArra
转载
2024-01-28 00:30:46
271阅读
轮廓发现简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果。可以用图像二值化得到二值化图像进行轮廓发现,也可以先边缘提取然后轮廓发现。完整代码import cv2 as cv
import numpy as np
#边缘提取
def egde_demo(image):
blurred=cv.GaussianBlur(image,(3
转载
2024-04-03 14:30:27
581阅读
算法介绍Canny是边缘检测算法,在1986年提出是一个很好的边缘检测器很常用也很好用的图像处理方法## 算法实现步骤高斯模糊 GaussianBlur()
灰度转换 cvtColor
计算梯度 Sobel\ScharrKaTeX parse error: Undefined control sequence: \ at position 75: … \end{bmatrix} \̲ ̲KaTeX
转载
2023-12-27 21:18:17
142阅读
1. 题目描述安装opencv环境,实现边缘提取2. 实现过程1、 安装opencv+python环境2、 打开图片3、 将图片二值化4、 提取边缘5、 显示图片3. 运行结果代码:运行结果: 4. 问题及解决方法问题:提取边缘时,背景为黑色,边缘为白色,与要求不符解决方法:用255减去原图灰度矩阵,就能得到颜色转置
转载
2023-06-06 09:55:52
413阅读
1、Roberts算子2、Prewitt算子3、Sobel算子4、Laplacian算子5、Scharr算子6、Canny算子步骤1.步骤2.步骤3.1)2)步骤4.步骤5.7、LOG算子 1、Roberts算子在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取。该函数主要是利用内核实现对图像的卷积运算。dst = filte
转载
2023-08-20 13:32:37
813阅读
之前的坑少程序后面工作后接触到在补例程,我还是重点学习工作要用的吧,比如边缘检测。这个帖子费时有点久,所有东西本人都亲自过了一遍。1.基本概念边缘检测是图像处理与计算机视觉中的重要技术之一,其目的是检测识别出图像中亮度变化剧烈的像素点构成的集合。图像边缘的正确检测有利于分析目标检测、定位及识别,通常目标物体形成边缘存在以下几种情形:<1>目标物呈现在图像的不同物体平面上,深度不连续&l
一、概论下面将学习opencv中边缘检测的各种算子和滤波器:包括canny算子,sobel算子,scharr算子。什么叫做边缘检测呢?边缘检测的目标是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反应了属性的重要事件和变化,包括:(1) 、深度上的不连续(2) 、表面方向的不连续(3) 、物质属性变化(4) 、场景照明变化边缘检测剔除了大量认为与图