背景小编在刚开始学习Python时,是在Python官网下载的原生版本,用的是自带的编码环境,后来了解到在数据分析、数据科学领域用Jupyter notebook比较好,于是直到现在也是一直在用Jupyter notebook,也偶尔用PyCharm做开发。在数据分析与处理中Jupyter notebook还是很方便,可以直接查看数据,可以写文档,可以画图 等很多优点,感觉Jupyter note
今天在阿里云上申请了一个深度学习服务器,碰到了很多坑,在网上查了好多资料,大都是自己电脑可以别的电脑就不可以的那种,整合了多个博客的文章才把环境配置好,现在写一个完整的配置方案,以后用起来就方便多了,也供大家参考。一、首先安装nvidia驱动:***在官网上查找符合自己gpu的驱动:http://www.nvidia.com/Download/index.aspx,选择合适的版本下载。 更新系统源
 我认为最好的方法就是screen命令。在大家对man手册不感冒的情况下,我先来说说这个命令的用法。介绍一下用screen命令实现一个终端登录后,可以使用多个屏幕进行工作的。众所周知,我们登录系统的控制台后,控制台上有多个虚拟终端,可以通过Alt+F1。。。F6来进行多屏幕切换作业。但是我们如果通过ssh登录到系统后,如何在一个终端下用多个屏幕工作,以提高工作效率呢。screen命令可以
的一 前言最近写了个又臭又长的代码来验证idea,效果还行但速度太慢,原因是代码中包含了一个很耗时的模块,这个模块需要连续执行百次以上才能得到最终结果,经过实测模块每次执行消耗约20ms,而且两次执行之间没有先后关系,为了保证系统的实时性,我决定将这一部分运算放在GPU上执行。二 环境配置(dirver CUDA + runtime CUDA)要想使用GPU加速计算,首先需要一块性能还可以的Nvi
1、目前主流方法:.to(device)方法 (推荐)import torch import time #1.通常用法 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") data = data.to(device) model = model.to(device) ''' 1.先创建device
转载 2023-08-31 10:09:45
4606阅读
在服务器里利用anaconda科学利用GPU以及管理代码一 使用conda产生虚拟环境1 首先在服务器里下载安装anacodna2 .创建python虚拟环境3 使用激活(或切换不同python版本)的虚拟环境4 对虚拟环境中安装额外的包5 关闭虚拟环境(即从当前环境退出返回使用PATH环境中的默认python版本)6 删除虚拟环境。7 删除环境中的某个包二 使用pycharm连接服务器中的虚拟
利用Google Colaboratory运行本地深度学习代码前提条件一、创建Colaboratory二、连接GPU云服务器查看GPU型号三、将本地项目压缩包上传到谷歌云盘并解压3.1上传3.2 解压绑定GoogleDrive开始解压 最近学习使用了Google免费的GPU云服务器用于训练GitHub上的一个深度学习项目,下面记录一下环境配置过程 前提条件拥有谷歌账号,并注册谷歌云盘(注册登录
转载 2024-04-18 16:32:56
130阅读
问题描述在使用服务器多核跑程序的时候,需要把核心的程序抽取出来,然后提供迭代参数。然后就可以使用多核去跑程序了。但是在执行的过程中报错如下:Exception has occurred: TypeError unhashable type: 'list'File "/home/LIST_2080Ti/njh/CHB-MIT-DATA/epilepsy_eeg_classification/prep
GPU在视频转码中的应用研究进展已有的视频转码软件目前,市场上已经出现了几款优秀的利用GPU进行辅助视频转码的软件,典型的代表包括nVidia的Badaboom,AMD的ATIAvivo,Cyberlink的MediaShow和免费软件MediaCoder。其中,前三者均为商业软件,只有MediaCoder是免费软件。MediaCoder在2008年仍是基于GPL协议的开源软件,后来作者封闭了源代
转载 2024-08-25 16:50:02
56阅读
1 前言原料:我有两台电脑,一台是Win10系统的小米笔记本12.5(简称为A电脑),一台是Ubuntu系统的小米游戏本(简称为B电脑)。A电脑没有GPU,没有配置任何深度学习环境;而B电脑的GPU是GTX 1060,配置好了深度学习环境,已经能用CUDA代码了。A电脑和B电脑使用的IDE都是VS Code。需求:代码调试:因为B电脑有GPU,我希望能够用A电脑调试B电脑的代码。场景1(远程调试
深度学习怎么代码?从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大的计算量,以至于CPU算不过来,需要通过GPU帮忙,今天怎么教大家免费使用GPU深度学习代码。深度学习怎么代码?Colabortory是一个jupyter notebook环境,它支持python2和python3,还包括TPU和GPU加速,该软件与Google云盘硬盘集成,用户可以轻松共享项目或将
目录一、keras代码GPU配置二、tensorflow代码GPU配置三、给算子指定GPU或CPU 当设置的GPU号大于实际的GPU个数时(比如实际只有一个GPU,配置中设置成使用1号GPU),创建会话会失败,提示tensorflow.python.framework.errors_impl.InternalError: Failed to create session.一、keras代
转载 2024-03-21 14:56:31
164阅读
作者:凌逆战从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大(重要的事情说三遍)的计算量,以至于CPU算不过来,需要通过GPU帮忙,但这必不意味着CPU的性能没GPU强,CPU是那种综合性的,GPU是专门用来做图像渲染的,这我们大家都知道,做图像矩阵的计算GPU更加在行,应该我们一般把深度学习程序让GPU来计算,事实也证明GPU的计算速度比CPU块,但是(但是前面的话都
基本命令(linux/shell)基本操作连接服务器查看GPU状态进程管理一键导出环境 / 配置环境复制/移动pip下载很慢虚拟环境condashell脚本串行调参tensorboard可视化训练过程 记录深度学习使用服务器一些常用的shell操作。 基本操作连接服务器ssh username@ipaddress (直接用命令行连接,但scp传文件等必须是linux系统,最开始安了ubuntu
 将作为一名程序员,进一步确定的目标是成为一个架构师,那么能耗必须考虑。        写代码与能耗的关系不言自明,现在假设将网络视频监控的监控识别算法放在客户端,既不利于算法的保护,也不利于算法的优化,更不利于降低能耗。    谈到能耗,每一台服务器都是吃电器,如果我不是老板,就不考虑耗电的情况,但是如果作为这个公司的一员,也
转载 2024-04-25 15:12:07
120阅读
第一次安装的时候真的是纯小白,各种概念都不懂,只知道使用GPU代码需要安装CUDA。弯路走了不少,前前后后被虐了一周,安装的非常艰辛,且混乱;第二次安装是在同学电脑上,又绕了些弯路,不过这次只花了半天时间,当时非常自豪来着。这次是第三次安装,有了第二次的经验,安装的非常非常顺利,可谓一气呵成。现在把过程发过来。步骤简述:1.确认有Nvidia GPU2.升级驱动程序3.安装CUDA4.安装GPU
目录如何在GPU上训练pytorch代码?1.需要将哪些数据送入gpu里呢?2. 如何将这三个部分送入gpu呢?如何确认程序是否在GPU——查看GPU使用情况在Python代码指定GPU设置定量的GPU使用量设置最小的GPU使用量PyTorchGPU利用率较低问题原因: 1.1 GPU内存占用率问题1.2 GPU利用率问题问题原因分析与总结记录:3.1 模型提速技巧如何在GPU上训
    指令是处理器的语言,这个语言的格式决定了它和外界如何沟通,CPU如此,GPU也如此。    X86的指令是不等长的,1个字节的指令很多,很多个字节的也不少。早期版本的ARM处理器指令都是4个字节,为此曾被当年的手机巨头诺基亚批评占内存太多,聪明的ARM工程师加班加点,短时间内搞出了一套“指令减肥”方案,可以把很多常用指令编码为2个
这篇文章主要讲TensorFlow在原生Windows下的安装教程。安装环境:TensorFlow0.12+cuda8.0+cudnn v5.1+window7+python3.5(1)  先安装Python3.5从官网下载Python3.5,https://www.python.org/downloads/windows/,双击安装即可。接着将安装路径添加进环境变量中。具体步
用免费GPU线上SD项目实践 DataWhale组织了一个线上白嫖GPUchatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我前两天刚跟着B站秋叶大佬和Nenly大佬的视频学习过,但是生成某些图片显存吃紧,想线上部署尝试一下。参考:DataWhale 学习手册链接1 学习简介本
  • 1
  • 2
  • 3
  • 4
  • 5