的一 前言最近写了个又臭又长的代码来验证idea,效果还行但速度太慢,原因是代码中包含了一个很耗时的模块,这个模块需要连续执行百次以上才能得到最终结果,经过实测模块每次执行消耗约20ms,而且两次执行之间没有先后关系,为了保证系统的实时性,我决定将这一部分运算放在GPU上执行。二 环境配置(dirver CUDA + runtime CUDA)要想使用GPU加速计算,首先需要一块性能还可以的Nvi
在服务器里利用anaconda科学利用GPU以及管理代码一 使用conda产生虚拟环境1 首先在服务器里下载安装anacodna2 .创建python虚拟环境3 使用激活(或切换不同python版本)的虚拟环境4 对虚拟环境中安装额外的包5 关闭虚拟环境(即从当前环境退出返回使用PATH环境中的默认python版本)6 删除虚拟环境。7 删除环境中的某个包二 使用pycharm连接服务器中的虚拟
利用Google Colaboratory运行本地深度学习代码前提条件一、创建Colaboratory二、连接GPU云服务器查看GPU型号三、将本地项目压缩包上传到谷歌云盘并解压3.1上传3.2 解压绑定GoogleDrive开始解压 最近学习使用了Google免费的GPU云服务器用于训练GitHub上的一个深度学习项目,下面记录一下环境配置过程 前提条件拥有谷歌账号,并注册谷歌云盘(注册登录
转载 2024-04-18 16:32:56
130阅读
问题描述在使用服务器多核跑程序的时候,需要把核心的程序抽取出来,然后提供迭代参数。然后就可以使用多核去跑程序了。但是在执行的过程中报错如下:Exception has occurred: TypeError unhashable type: 'list'File "/home/LIST_2080Ti/njh/CHB-MIT-DATA/epilepsy_eeg_classification/prep
1 前言原料:我有两台电脑,一台是Win10系统的小米笔记本12.5(简称为A电脑),一台是Ubuntu系统的小米游戏本(简称为B电脑)。A电脑没有GPU,没有配置任何深度学习环境;而B电脑的GPU是GTX 1060,配置好了深度学习环境,已经能用CUDA代码了。A电脑和B电脑使用的IDE都是VS Code。需求:代码调试:因为B电脑有GPU,我希望能够用A电脑调试B电脑的代码。场景1(远程调试
目录一、keras代码GPU配置二、tensorflow代码GPU配置三、给算子指定GPU或CPU 当设置的GPU号大于实际的GPU个数时(比如实际只有一个GPU,配置中设置成使用1号GPU),创建会话会失败,提示tensorflow.python.framework.errors_impl.InternalError: Failed to create session.一、keras代
转载 2024-03-21 14:56:31
164阅读
GPU在视频转码中的应用研究进展已有的视频转码软件目前,市场上已经出现了几款优秀的利用GPU进行辅助视频转码的软件,典型的代表包括nVidia的Badaboom,AMD的ATIAvivo,Cyberlink的MediaShow和免费软件MediaCoder。其中,前三者均为商业软件,只有MediaCoder是免费软件。MediaCoder在2008年仍是基于GPL协议的开源软件,后来作者封闭了源代
转载 2024-08-25 16:50:02
56阅读
深度学习怎么代码?从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大的计算量,以至于CPU算不过来,需要通过GPU帮忙,今天怎么教大家免费使用GPU深度学习代码。深度学习怎么代码?Colabortory是一个jupyter notebook环境,它支持python2和python3,还包括TPU和GPU加速,该软件与Google云盘硬盘集成,用户可以轻松共享项目或将
作者:凌逆战从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大(重要的事情说三遍)的计算量,以至于CPU算不过来,需要通过GPU帮忙,但这必不意味着CPU的性能没GPU强,CPU是那种综合性的,GPU是专门用来做图像渲染的,这我们大家都知道,做图像矩阵的计算GPU更加在行,应该我们一般把深度学习程序让GPU来计算,事实也证明GPU的计算速度比CPU块,但是(但是前面的话都
 将作为一名程序员,进一步确定的目标是成为一个架构师,那么能耗必须考虑。        写代码与能耗的关系不言自明,现在假设将网络视频监控的监控识别算法放在客户端,既不利于算法的保护,也不利于算法的优化,更不利于降低能耗。    谈到能耗,每一台服务器都是吃电器,如果我不是老板,就不考虑耗电的情况,但是如果作为这个公司的一员,也
转载 2024-04-25 15:12:07
120阅读
目录如何在GPU上训练pytorch代码?1.需要将哪些数据送入gpu里呢?2. 如何将这三个部分送入gpu呢?如何确认程序是否在GPU——查看GPU使用情况在Python代码中指定GPU设置定量的GPU使用量设置最小的GPU使用量PyTorchGPU利用率较低问题原因: 1.1 GPU内存占用率问题1.2 GPU利用率问题问题原因分析与总结记录:3.1 模型提速技巧如何在GPU上训
第一次安装的时候真的是纯小白,各种概念都不懂,只知道使用GPU代码需要安装CUDA。弯路走了不少,前前后后被虐了一周,安装的非常艰辛,且混乱;第二次安装是在同学电脑上,又绕了些弯路,不过这次只花了半天时间,当时非常自豪来着。这次是第三次安装,有了第二次的经验,安装的非常非常顺利,可谓一气呵成。现在把过程发过来。步骤简述:1.确认有Nvidia GPU2.升级驱动程序3.安装CUDA4.安装GPU
前言        本篇文章为学习笔记,流程参照Datawhale用免费GPU线上AI项目实践课程任务,个人写此文章为记录学习历程和补充概念,并希望为后续的学习者开辟道路,没有侵权的意思。如有错误也希望大佬们批评指正。模型介绍        ChatGLM-6B 是一个开源的、
# 用GPUPython代码的科学探索 在机器学习、深度学习和科学计算的领域中,CPU(中央处理单元)对于执行计算任务一直扮演着重要的角色。但是,随着数据量的增加和计算复杂度的提升,GPU(图形处理单元)的出现为我们提供了一个高效的计算替代方案。GPU的并行处理能力使得它在处理大量数据和复杂的计算时展现了出色的性能。 ## 什么是GPUGPU最初设计用于处理图形渲染,如3D游戏中的图像
原创 2024-09-29 06:22:26
53阅读
作者:英伟达高性能计算 事实上,寄存器数量限制程序性能的案例还是比较少的。 首先您要明确是否真的是此因素导致了您程序性能无法进一步提升。 寄存器影响主要两个方面:active warp 的数量(即occupancy )和寄存器溢出导致的local memory的传输。 首先看active warp: 什么时候是因为寄存器使用过多导致active warp数量少,导
之前文章介绍了在win10安装linux子系统,方便我们一些支持Linux环境的开源代码。但如果要用到Nvidia的GPU和CUDA,我们最好找个服务器,目的是方便自己快速训练模型;如果只是想跑跑模型,不训练的话,可以在双系统上配置tensorflow环境(虚拟机实在太慢)。 为什么不在子系统配置呢?最主要的原因是,目前win10支持的linux子系统还比较简单,找不到Nvidia的GPU(给你
    指令是处理器的语言,这个语言的格式决定了它和外界如何沟通,CPU如此,GPU也如此。    X86的指令是不等长的,1个字节的指令很多,很多个字节的也不少。早期版本的ARM处理器指令都是4个字节,为此曾被当年的手机巨头诺基亚批评占内存太多,聪明的ARM工程师加班加点,短时间内搞出了一套“指令减肥”方案,可以把很多常用指令编码为2个
用免费GPU线上SD项目实践 DataWhale组织了一个线上白嫖GPUchatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我前两天刚跟着B站秋叶大佬和Nenly大佬的视频学习过,但是生成某些图片显存吃紧,想线上部署尝试一下。参考:DataWhale 学习手册链接1 学习简介本
1 运行环境 = 操作系统 + 硬件 2 Windows 克服了 CPU 以外的硬件差异 3 不同操作系统的 API 不同 4 FreeBSD Port 帮你轻松使用源代码 5 利用虚拟机获得其他操作系统环境 6 提供相同运行环境的 Java 虚拟机 7 BIOS 和引导 1 运行环境 = 操作系统 + 硬件操作系统和硬件决定了程序的运行环境。同一类型的硬件可以选择安装多种操作系统。
转载 1月前
339阅读
身为程序猿,C 语言大家一定都不陌生了,还记得当年在黑窗口中第一次显示出 hello, wordl! 时激动的心情吗?平时我们在写 C 程序时都用 IDE(集成开发环境),写好源代码之后点一下按钮,一键运行。但是不同的 IDE 会出现不同的按钮,甚至还有多个按钮,什么先点编译,后点运行(当时老师就是这么说的,咱也不知道为什么,照着做就是了)。 随着越来越深入了解计算机,我逐渐地明白了其中
  • 1
  • 2
  • 3
  • 4
  • 5