本文主要介绍了两种克服多重共线性的有偏估计方法,岭估计和主成分估计。
目录Chapter 6:回归参数的估计(4)3.8 岭估计3.8.1 岭估计的定义和性质3.8.2 岭参数的选择方法3.8.3 岭估计的几何意义3.9 主成分估计3.9.1 主成分估计的过程3.9.2 主成分估计的性质Chapter 6:回归参数的估计(4)3.8 岭估计3.8.1 岭
python数据挖掘学习笔记岭回归可视化方法确定λ的值交叉验证法确定λ值模型的预测lasso回归可视化处理交叉验证法确定λ模型的预测 众所周知,当数据具有较强的多重共线性的时候便无法使用普通的多元线性回归,这在数学上有严谨的证明但本文并不做介绍。有关公式的推导本文均不做说明,如有需要可在论文写作时查阅参考文献。 本文仅供个人学习时记录笔记使用 Reference:《从零开始学Python数据分
转载
2023-11-02 13:53:06
125阅读
# 在Python中使用Sklearn进行岭回归的探索
岭回归是一种适用于多重共线性问题的线性回归方法。相比普通最小二乘法,岭回归通过引入L2正则化项,有效抑制模型的复杂度,从而提升模型的泛化能力。在本文中,我们将通过Sklearn库在Python中实现岭回归,讨论其原理、应用场景以及代码示例。
## 什么是岭回归?
岭回归(Ridge Regression)是一种线性回归方法,它在损失函数
这里我们将对波士顿房价的原始数据进行处理,在数据中人为添加一些缺失值,然后根据分三种情况:①用0填补缺失值,②均值填补,③用随机森林填补,之后分别构建随机森林回归,计算MSE,并做可视化。1.导入相应包import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import
转载
2024-04-22 10:32:22
38阅读
岭回归的基本用法Ridge回归通过对系数的大小施加惩罚来解决普通最小二乘法的一些问题。岭系数最小化的是带惩罚项的误差平方
原创
2022-11-02 09:51:23
292阅读
岭回归(英文名:ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,自变量之间线性相关-correlation很高,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。 回归分析中常用的最小二乘法是一种
转载
2024-04-26 22:11:39
81阅读
在介绍岭回归算法与Lasso回归算法之前,先要回顾一下线性回归算法。根据线性回归模型的参数估计公式可知可知,得到的前提是矩阵可逆。换句话说就是样本各个特征(自变量)之间线性无关。然而在实际问题中,常常会出现特征之间出现多重共线性的情况,使得行列式的值接近于0,最终造成回归系数无解或者无意义。 为了解决这个问题,岭回归算法的方法是在线性回归模型的目标函数之上添加一个l2的正则项,进而使得模
转载
2023-12-22 21:01:41
80阅读
在介绍岭回归算法与Lasso回归算法之前,先要回顾一下线性回归算法。根据线性回归模型的参数估计公式可知可知,得到的前提是矩阵可逆。换句话说就是样本各个特征(自变量)之间线性无关。然而在实际问题中,常常会出现特征之间出现多重共线性的情况,使得行列式的值接近于0,最终造成回归系数无解或者无意义。 为了解决这个问题,岭回归算法的方法是在线性回归模型的目标函数之上添加一个l2的正则项,进而使得模
转载
2023-07-11 11:05:43
196阅读
岭回归解决线性回归参数β可能出现的不合理的情况,当出现自变量的数量多余样本数的数量或自变量之间存在多重共线性的情况时回归系数无法按照模型公式来计算估计值实现思路就是在原来线性回归的基础之上加一个l2惩罚项(正则项)交叉验证让所有的数据都参与模型的构建和模型的测试(10重交叉验证)100样本量拆封成10组,选取一组数据,剩下的九组数据建立模型可得该组合的模型及其检验值,如此可循环十次,便可以获得十个
转载
2023-08-04 21:14:06
218阅读
上一节我们利用线性回归模型,预测了岩石和矿石的分类问题,但是我们发现训练集的预测效果比预测集的好,这就可能是过拟合导致的。下面便介绍今天的学习内容:通过设置合适的惩罚系数 α 来控制回归系数 β 不至于过大, 其中有一种称为“岭回归”具体实现方案,其对应的数学表示: 于是解决过拟合的问题变成对选择适合 α 进行训练,使测试集预测的误差最小。 注意:当 α=0时,就是普通的最小二乘法问题。 这里公式
转载
2023-11-10 10:30:09
70阅读
岭回归的原理:首先要了解最小二乘法的回归原理设有多重线性回归模型 y=Xβ+ε ,参数β的最小二乘估计为当自变量间存在多重共线性,|X'X|≈0时,设想|X'X|给加上一个正常数矩阵(k>0)那么|X'X|+kI 接近奇异的程度就会比接近奇异的程度小得多。考虑到变量的量纲问题,先要对数据标准化,标准化后的设计矩阵仍用X表示,定义称为的岭回归估计,其中,k称为岭参数。
转载
2023-06-26 11:06:44
407阅读
什么是岭回归?岭回归是专门用于共线性数据分析的有偏估计的回归方法,实际上是一种改良的最小二乘法,但它放弃了最小二乘的无偏性,损失部分信息,放弃部分精确度为代价来寻求效果稍差但更符合实际的回归方程。此处介绍下岭回归的回归系数公式,B(k)=(X’X+kI)-1X’Y作为回归系数的估计值,此值比最小二乘估计稳定。称B(k)为回归系数的岭估计。显然,当k=0时,则B(k)就成为了最小二乘估计;而当k→∞
转载
2023-11-29 19:59:07
161阅读
一、基本知识1、岭回归:从公式看,加入正则化项(2范数)。回归系数的计算公式为:问题引入:若给定数据集X,如果XTX的逆存在,可以使用常规的线性回归方法。但是,(1)数据样本数比特征数少的情况,矩阵的逆不能直接计算;(2)即使样本数多于特征数,若特征高度相关,XTX的逆依然无法计算。此时,可以考虑岭回归。另,岭回归是有偏估计回归方法,引入lamda来限制所有系数之和,通过引入该惩罚项(从需要最小化
转载
2024-04-29 23:41:56
62阅读
DecisionTreeRegressorclass sklearn.tree.DecisionTreeRegressor (criterion=’mse’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=Non
转载
2024-06-24 08:51:10
35阅读
岭回归是一种专门用于共线性数据分析的有偏估计回归方法,实质上时改良的最小二乘估计法,通过放弃最小二乘法的无偏性(在反复抽样的情况下,样本均值的集合的期望等于总体均值),以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对共线性问题和病态数据的拟合要强于最小二乘法经,常用于多维问题与不适定问题(ill-posed problem)。 岭回归通过引入一个惩罚变量解决了普通最小
转载
2023-09-26 10:40:51
109阅读
最近有小伙伴问我说,有没有sklearn的代码详解,前面博客讲的有点偏理论了。接受了小伙伴的意见,以后大管就理论和代码穿插着聊吧。今天咱就来聊一聊sklearn中线性回归和岭回归(L2正则)的代码详解吧。sklearn.linear_model.LinearRegression 使用的方法是最小线性二乘回归,线性回归拟合系数w = (w1,…,wp)的线性模
转载
2024-05-09 10:59:32
82阅读
岭回归使用L2正则化对系数w进行约束,以限制模型复杂度(防止过拟合),import numpy as np
import pandas as pd
import mglearn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
X,y = mglearn.datasets.lo
转载
2024-03-26 09:21:33
136阅读
# 使用Python进行岭回归分析
## 什么是岭回归?
岭回归(Ridge Regression)是一种用于处理多重共线性问题的线性回归方法。这种方法在损失函数中引入了L2正则化项,从而能够在回归模型中减少系数的复杂度和模型的过拟合现象。岭回归在许多场合下能提供比普通最小二乘法(OLS)更加稳健的预测结果。
在数据科学领域,使用Python来实现岭回归变得越来越普遍。本文将介绍如何使用Py
原创
2024-08-18 03:51:54
118阅读
# 使用Python实现岭回归
岭回归(Ridge Regression)是一种线性回归的扩展方法,旨在处理多重共线性问题。它在损失函数中加入了L2正则化项,通过降低模型复杂度来提高预测性能,尤其是在数据特征较多或者特征之间相关性较强的情况下。
本文将详细介绍如何使用Python实现岭回归,包括对数据预处理、建模以及结果可视化的步骤。在这些步骤中,我们会结合代码示例和相应的解释,帮助初学者更好
介绍Glmnet是一个通过惩罚最大似然来拟合广义线性模型的包。正则化路径是针对正则化参数λ的值网格处的套索或弹性网络罚值计算的。该算法速度极快,可以利用输入矩阵中的稀疏性x。它符合线性,逻辑和多项式,泊松和Cox回归模型。可以从拟合模型中做出各种预测。它也可以适合多响应线性回归。glmnet算法采用循环坐标下降法,它连续优化每个参数上的目标函数并与其他参数固定,并反复循环直至收敛。该软件包还利用强
转载
2024-05-15 09:23:21
49阅读