线性判别分析LDA原理总结</h1> <div class="clear"></div> <div class="postBody">     在主成分分析(PCA)原理总结中,我们对算法PCA做了总结。这里我们就对另外一种经典的方法线性判别分析(Linear Discriminant Analysis, 以
目录例子LDA在前几篇的文章中,大管提到了PCA,有小伙伴私信说在实际情况中,效果不太好。那大管今天就和大家聊一聊另一种的方法线性判别分析 (LDA)。它目前也是机器学习领域中比较经典而且又热门的一种算法。     还记得在PCA中是怎样做的吗?简单来说,是将数据映射到方差比较大的方向上,最后用数学公式推导出矩阵的前TopN的特征向量,这里的方差可以理解为
转载 2024-02-21 16:20:43
85阅读
# LDAPython中的应用 在数据分析和机器学习的领域,是一项重要的技术。它有助于减少数据的复杂性,提高模型的性能。线性判别分析(LDA)是一种广泛使用的方法,尤其在分类任务中表现优异。本文将介绍LDA的基本概念及其在Python中的应用,同时提供代码示例和可视化图表。 ## 什么是LDALDA(Linear Discriminant Analysis)是一种用于分
原创 2024-09-04 03:31:51
36阅读
# 使用LDA进行:原理与Python实现 LDA (线性判别分析) 是一种常用的技术,广泛应用于模式识别和机器学习。LDA不仅用于特征,还能在的同时增强数据的判别能力。在本篇文章中,我们将探讨LDA的基本原理,并通过Python代码实现一个简单的LDA示例。 ## LDA的基本原理 LDA的核心思想是寻找一个最佳的投影方向,使得在这个方向上不同类别的数据之间的距离尽可能
原创 11月前
117阅读
为什么要用LDA前面的博客提到PCA是常用的有效的数据的方法,与之相同的是LDA也是一种将数据的方法。PCA已经是一种表现很好的数据的方法,那为什么还要有LDA呢?下面我们就来回答这个问题?  PCA是一种无监督的数据方法,与之不同的是LDA是一种有监督的数据方法。我们知道即使在训练样本上,我们提供了类别标签,在使用PCA模型的时候,我们是不利用类别标签的,而LDA
文章目录线性判别分析(LDALDA思想总结图解LDA核心思想二类LDA算法原理LDA算法流程总结LDA和PCA区别LDA优缺点主成分分析(PCA)主成分分析(PCA)思想总结图解PCA核心思想PCA算法推理PCA算法流程总结PCA算法主要优缺点的必要性及目的KPCA与PCA的区别 线性判别分析(LDALDA思想总结 线性判别分析(Linear Discriminant Analysis,
转载 2024-05-24 21:00:21
71阅读
1.简介     在另一篇文章中讲了利用PCA对图片数据进行,这次介绍一下另一种方法——LDA(Linear Discriminant Analysis),即线性判别分析。跟PCA不同,LDA是一种supervised的方法。即我们对数据时需要数据的label。    LDA的原理是要找到一个投影面,使得投影后相
转载 2024-06-23 06:49:29
111阅读
 作者:  郗晓琴  熊泽伟今天这篇文章是介绍目前前沿好用的一种可视化算法:t-SNE,并且附带python的实际例子加以讲解。t-SNE是什么技术我们直接开门见山好了,第一件事:什么是t-SNE?t-SNE的全称叫做t分布式随机邻居嵌入(t-SNE)。该算法是一种非监督的非线性技术,主要用于数据探索和可视化高数据。简而言之,t-SNE为我们提供了数据
基于PCA/LDA的数据维和可视化IntroductionProject IntroFile IntroTools IntroCode&Dataset LinkProcessPreparations of ImportsInitialization of dataPCAtwo-dimensionalthree-dimensionalLDAtwo-dimensionalthree-dim
LDA维和分类 LDA可以降维和分类 LinearDiscriminantAnalysis(LDA): 就是将多维的样本数据集映射到一个坐标轴上(可以是多维的(以降作为目的)),使得样本数据可以在这个坐标轴上就可以进行分类,和最小的类内距离,投影后使样本在新的子空间有最大的类间距离即样本在该空间中有最佳的可分离性。(即用这个坐标系就可以进行样本分
转载 2024-06-26 10:20:27
47阅读
1.原理的概述由于特征数据过于庞大,需要对数据进行处理,即通过某种映射方法将原始高维空间中的数据点映射到低维度的空间中(减少特征的个数),比较经典的是LDA线性判别分析(Linear Discriminant  Analysis)和PCA主成分分析。LDA线性判别分析也叫作Fisher 线性判别(FLD)(有监督问题),最初用于机器学习的分类任务,更多用于不仅要压缩数据
1.什么是LDALDA线性判别分析也是一种经典的方法,LDA是一种监督学习的技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督技术。LDA的思想可以用一句话概括,就是“*投影后类内方差最小,类间方差最大*”。什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距
转载 2023-05-18 15:32:20
244阅读
1点赞
1.PCA主成分分析PCA是不考虑样本类别输出的无监督技术,实现的是高数据映射到低。PCA原理这个介绍的不错:线性代数矩阵性质背景:特征值表示的是矩阵在特征值对应的特征向量方向上的伸缩大小;步骤:1)组成数据矩阵def get_date(): m_vec = np.array([0, 0, 0]) cov_vec = np.array([[1, 0, 0], [0,
转载 2024-05-20 10:44:14
0阅读
一、数据了解1.1、数据原理:机器学习领域中所谓的就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的;1.2、不进行数据的可能的影响:
一、LDA算法  基本思想:LDA是一种监督学习的技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督技术。 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。  浅显来讲,LDA方法的考虑是,对于一个多类别的分类问题,想要把它们映射到一个低维空间,如一
# LDA及其Python实现 在数据分析与机器学习领域,是一个重要的预处理步骤,通过将高数据映射到低维空间,帮助我们去除噪声、提高计算效率并减少过拟合风险。LDA(线性判别分析)是一种经典的技术,特别适用于分类问题。本文将探讨LDA的基本原理,并给出Python实现的示例代码。 ## LDA的基本原理 LDA的目标是通过最大化类间散度和最小化类内散度来找到最佳的投影方向。在数
原创 10月前
142阅读
# 使用Python实现LDA 在数据分析和机器学习中,是一个非常重要的步骤。在本教程中,我们将重点介绍如何使用LDA(线性判别分析)进行LDA不仅能帮助我们减少数据的维度,还能提升分类的准确性。以下是我们将要完成的步骤和代码实现。 ### 1. 整体流程 为了更清晰地了解整个过程,我们可以将任务划分为以下几个步骤: | 步骤 | 描述 | | ---- | ---- | |
原创 10月前
124阅读
# LDA代码实现 ## 概述 本文将介绍如何使用Python实现LDA(线性判别分析)算法。LDA是一种经典的方法,它能够将高数据映射到低维空间中,并保留数据的类别判别信息。LDA常被用于特征选择、数据可视化等任务中。 ## LDA算法流程 下表展示了整个LDA算法的流程: | 步骤 | 描述 | | --- | --- | | 1. 数据准备 | 读取数据集,并
原创 2023-09-08 12:54:08
254阅读
   从主观的理解上,主成分分析到底是什么?它其实是对数据在高维空间下的一个投影转换,通过一定的投影规则将原来从一个角度看到的多个维度映射成较少的维度。到底什么是映射,下面的图就可以很好地解释这个问题——正常角度看是两个半椭圆形分布的数据集,但经过旋转(映射)之后是两条线性分布数据集。LDA与PCA都是常用的方法,二者的区别在于:出发思想不同。PCA主要是从特征的协方差角度
转载 2024-05-30 01:58:49
14阅读
若数据集特征十分庞大,可能会使计算任务变得繁重,在数据特征有问题时,可能会对结果造成不利影响。 因此可以用算法,通过某种映射方法,将原始高维空间中的数据点映射到低纬度的空间中。这里介绍LDA(有监督学习算法)。线性判别分析(Linear Discriminant Analysis,LDA),也叫作Fisher线性判别,最开始用于分类任务,但由于其对数据特征进行了投影,成为一种经典的方法
转载 2024-04-24 13:35:33
67阅读
  • 1
  • 2
  • 3
  • 4
  • 5