KNN一、算法简述二、运行原理2.1、算法核心思想2.2、距离计算2.3、K值选择三、算法实现3.1、Sklearn KNN参数概述3.2、 KNN代码实例四、算法特点五、算法优缺点六、KNN 和 K-means比较 一、算法简述KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。注意:KNN 算法是有监督学习中的分类算法,它看起来和另一个机器学习算法 K-means 有点像
转载
2023-08-14 16:55:46
78阅读
分类算法之K最近邻算法(KNN)的Python实现KNN的定义所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。介绍如下图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据
转载
2024-08-09 00:37:44
32阅读
一、Knn第三方库参数及涉及的函数参数介绍(1)neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1)n_neighbors:用于指定近邻样本个数K,默
转载
2023-07-06 10:03:22
288阅读
k-近邻算法(KNN)是一种基本的分类与回归方法。算法介绍:给定一个训练数据集,对于新的输入实例,在训练数据集中找到与该实例最邻近的K个实例。如果这K个实例多数属于某个类别,则把该输入实例分为这个类。简单来说,KNN算法的思想就是“近朱者赤,近墨者黑”。算法描述: 总结:从以上算法描述我们可以看出,K邻近算法的3个关键问题是:距离度量、K值选择和分类决策规则。Python实例:说明:本实例来自于《
转载
2024-06-01 16:24:30
103阅读
第一次写博客,欢迎大家来观看,之后会有连载,主要是用于学习机器学习实战(Machine Learning in Action)这本书的例子 今天先介绍一下KNN分类KNN原理:存在一个样本数据集合,也做训练集,并且样本中的每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。输入没有标签的数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(
转载
2023-08-09 16:52:33
120阅读
纸上得来终觉浅,仅仅懂了原理还不够,要用代码实践才是王道,今天小编就附上小编自己在学习中实践的KNN算法。KNN算法伪代码:对未知类别属性的数据集中的每个点一次执行以下操作:(1)计算已知类别数据集中的点与当前点之间的距离;(2)按照距离递增次序排序;(3)选取与当前点距离最小的k个点;(4)确定前k个点所在类别出现的频率(5)返回前k个点出现频率最高的类别作为当前点的预测分类;Python代码如
转载
2023-09-18 18:58:57
0阅读
一、简介 KNN算法,全称为K Nearest Neighbor算法,也叫K临近算法,是一种懒惰学习的有监督分类算法。(懒惰学习是指训练后并不建立确定的模型,而是根据输入的数据与训练集的关系即时进行分类。)KNN算法作为机器学习中较基础的算法,其分类的准确性与变量K的取值有很大关系。二、原理 先举一个经典的例子,根据电影中接吻和打斗镜头出现的次数判断电影类型:电影名称打斗次数接吻次数电影类型C
转载
2023-10-07 19:29:46
89阅读
KNN算法是大家做数据分析常用的一种算法之一,这里我给大家分享一下用Python中KNN算法,有点简单,希望大家不要见笑。KNN算法,又叫k近邻分类算法。这里主要用到numpyh和matplotlib两个模块。k近邻分类算法是机器学习、数据分析的一种。同时也是监督算法,就是需要数据。就是每个数据都要有对应的含义。但是KNN不会自主学习。numpy是数据分析,机器学习等一个常用的模块。matplot
转载
2023-12-12 16:43:15
86阅读
前言:这篇文章主要为大家详细介绍了python实现KNN分类算法,文中示例代码介绍的非常详细,具有一定的参考价值,希望对各位有所帮助。一、KNN算法简介邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间
转载
2023-06-29 13:59:38
141阅读
KNN简介来自百度百科 以及 mlapp 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法
转载
2023-12-06 16:07:33
63阅读
(1)kNN算法_手写识别实例——基于Python和NumPy函数库1、kNN算法简介kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算法之一,算法思想很简单:从训练样本集中选择k个与测试样本“距离”最近的样本,这k个样本中出现频率最高的类别即作为测试样本的类别。下面的简介选自wiki百科:http://zh.wikipedia.org/wiki/%E6%9
转载
2024-08-28 11:55:50
410阅读
1、KNN算法概述 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 2、KNN算法介绍 最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配
转载
2023-07-04 21:34:51
155阅读
KNN算法K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法。它的思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类。kNN算法三要素: k值的选取,距离度量的方式和分类决策规则KNN算法的步骤: 1、收集数据集
转载
2023-09-15 21:58:08
129阅读
kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集
转载
2024-08-24 09:48:24
42阅读
一、概述1.思路k-近邻算法(KNN)采用测量不同特征值之间的距离方法进行分类。如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。2.原理数据集:存在一个样本数据集合,也称作训
转载
2024-03-29 10:22:14
45阅读
本人不是专业的python使用者,所以就不按照KNN的算法写推到代码了,直接运用机器学历里面运用得比较多,而且比较简单的sklearn包scikit-learn(简称sklearn)是目前最受欢迎,也是功能最强大的一个用于机器学习的Python库件。它广泛地支持各种分类、聚类以及回归分析方法比如支持向量机、随机森林、DBSCAN等等,由于其强大的功能、优异的拓展性以及易用性,目前受到了很多数据科学
转载
2023-10-13 21:29:27
132阅读
内容参考了某_统计学习方法_。KNN算法的主要实现步骤:计算测试数据与各训练数据之间的距离。按照距离的大小进行排序。选择其中距离最小的k个样本点。确定K个样本点所在类别的出现频率。返回K个样本点中出现频率最高的类别作为最终的预测分类。此次实现的方式是对数据进行一个测试,并且这个knn就是单纯的近邻,没有对距离采取加权处理,并且没有使用kd树,代码如下'''
采用线性的方式实现KNN算法
'''
转载
2023-06-20 17:12:22
154阅读
KNN(K-Nearest Neighbor) K 近邻算法,K近邻就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。KNN算法用于监督学习分类模型,预测结果是离散的机器学习算法。 KNN算法原理: 1、计算每个测试数据与每个训练数据的距离(相识度); 2、按照距离升序,对训练集数据进行排序; 3、获取距离最近的k个邻居,获取这k个邻居中的众数(取其中
转载
2023-05-27 14:41:59
235阅读
kNN算法的伪代码如下:计算当前点与已知类别的数据集的每个点的距离 距离公式为d=[(x-x₀)²+(y-y₀)²]½按照求得的距离按递增排序  
转载
2023-07-07 21:20:10
127阅读
本文未赘述原理,觉得知道knn的优秀的同志们都有一定的了解,直接上代码,本代码作为一个参考,希望大家能够结合本人的代码自己去做一遍,虽然可以直接调knn或有数据集,本文呈现的更多的是底层。1.创建knn.py# 定义一个knn函数,后期方便调用.
class KNN(object):
def __init__(self,k=3): # 定义内置函数,方便自己传参,默认k值为3
转载
2023-08-15 12:47:11
201阅读