Introduction特征融合的方法很多.如果数学化地表示,大体可以分为以下几种:: 、表示两个特征图,表示元素级相加. 代表如ResNet、FPN .表示张量 拼接操作。 代表如GoogleNet、U-Net. 是注意力函数。这里表示自注意力机制。代表如SENet、 CBAM、Non-local. 同样是将注意力机制作用在一个特征图上,而权重信息来源于对方。代表如GAU. 软注意力机制的一种,
机器学习基础篇(六)——KNN一、简介K-Nearest Neighbors(KNN) 是机器学习中的一个基础分类算法。1.工作原理首先我们需要一个训练样本集,并且样本集中每个数据都存在标签。存在标签就代表我们知道样本集中每一个数据与所属分类对应的关系。输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较。提取出样本集中特征最相似数据(最近邻)的分类标签,作为该数据的标签。一
转载 2024-03-26 10:24:07
61阅读
冗余梯度信息问题会导致低效优化和昂贵的推理计算。因此,提出利用跨阶段特征融合策略和截断梯度流来增强不同层内学习特征的可变性。此外,结合 Maxout 操作的 EFM 来压缩从特征金字塔生成的特征图,这大大减少了所需的内存带宽,因此推理效率足以与边缘计算设备兼容。本文基于DenseNet,引入了两个模块 Partial Dense Layer 和 Partial Transition Layer。部
小结concat是通道数叠加,描述图像本身的特征增加了,而每一特征下的信息是没有增加。add为简单的像素叠加,通道不变;add后描述图像的特征下的信息量增多了,但是描述图像的维度本身并没有增加,只是每一维下的信息量在增加,这显然是对最终的图像的分类是有益的。特征add的时候就是增加特征的信息量,特征concat的时候就是增加特征的数量,注重细节的时候使用add,注重特征数量的时候使用concat。
一、卷积神经网络 – CNN,最擅长的就是图片的处理,它受到人类视觉神经系统的启发。目前 CNN 已经得到了广泛的应用,比如:人脸识别、自动驾驶、美图秀秀、安防等很多领域。在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:图像需要处理的数据量太大,导致成本很高,效率很低图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高而CNN的出现解决了上述问题,即 「将复杂问题简化
转载 2024-04-29 11:49:42
51阅读
卷积神经网络(CNN)高级——GoogLeNet超参数:卷积核的大小就是一个超参数信息融合:举个例子,就是没门科目的分数*权重1,然后再Σ科目*权重1,即总分,这就是信息融合;说白了就是多个Channel的卷积加起来最后的那个值,就是信息融合3. 1*1卷积核:最主要的作用是改变通道数,从而减少运算数量(以下图为例:输入的Channel如果是3的话,那么1*1卷积核的Channel也得是3,但是最
KNNCNN相关 KNN(K-Nearest Neighbor)最邻近分类算法就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。KNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性         KNN最邻近分类算法的实现原
转载 2024-01-15 20:37:44
99阅读
一、CNN的结构输入层---->[卷积层*N---->池化层]*M---->全连接层二、卷积、池化和训练卷积运算过程: 以为5* 5的image和 3* 3的filter,stride=1,Relu为激活函数,为例。 feature_map中第一个元素的计算公式: feature_map[0][0]=Relu(1 * 1+1 * 0+1 * 1+0 * 0+1* 1+1 * 0+
转载 2024-01-11 19:42:50
82阅读
原文太长,简要摘记学习一下。城市数据的获取,获取方式主要有两种:●  第一种,以传统传感器为感知的方法●  第二种,以人为中心的感知方法第一个,以传统传感器的感知方法进一步可以分成两个子类,要么把传感器放在一些固定的地方,要么把传感器装在一些移动的物体上面,比如说在公交车、出租车上装传感器,但是不管哪一种,一旦装完之后人就不参与了,这个数据自动传到我们后台。另外一个,以人为中心
基于SIFT特征的图像拼接融合(matlab+vlfeat实现)piccolo,之前做的东西,简单整理下,不是做图像方向的,写的不好轻喷 主要原理参看SIFT算法详解和SIFT特征匹配算法介绍——寻找图像特征点的原理相应源码在基于SIFT特征的图像拼接融合(matlab+vlfeat实现)下面简单说下:SIFT算子特点主要思想:一种基于图像梯度分布的特征描述子。 特点:具备尺度不变性,抗干扰性好。
论文提出用于特征金字塔的高效特征交互方法FPT,包含3种精心设计的特征增强操作,分别用于借鉴层内特征进行增强、借鉴高层特征进行增强以及借鉴低层特征进行增强,FPT的输出维度与输入一致,能够自由嵌入到各种包含特征金字塔的检测算法中,从实验结果来看,效果不错论文: Feature Pyramid Transformer 论文地址:https://arxiv.org/abs/2007.09451论文代
如果那一天会来到,要分享的点可能有下面的,东西。1、尺度不变是什么。这个前文有了2、lowe在2004年的论文说了什么,程序复现。找到这个东西 是这个东西,解决了尺度上的问题,也就是原文说的。3、lowe( Received July 28, 2005; Accepted August 3, 2006 )全景图像拼接链接:然后在 后来 全景图像的拼接:http://www.do
SVM简介 Support Vector Machine (SVM) 是一个监督学习算法,既可以用于分类(主要)也可以用于回归问题。SVM算法中,我们将数据绘制在n维空间中(n代表数据的特征数),然后查找可以将数据分成两类的超平面。支持向量指的是观察的样本在n为空间中的坐标,SVM是将样本分成两类的最佳超平面。 KNN算法是物以类聚,人以群分,身
论文链接:https://arxiv.org/abs/2103.14858 代码链接:https://github.com/ding3820/MIMO-VRN编者言: 本文以视频缩放任务为切入点,将IRN视频超分话化。与normal的VSR不同点在于将降采样也加入学习任务,这或许是后VSR时代一个不错的研究方向。 看点 最近的大多数研究都集中在基于图像的上下采样联合优化方案上,这些方案
继往开来之DenseNetDenseNet最大化了这种前后层信息交流,通过建立前面所有层与后面层的密集连接,实现了特征在通道维度上的复用,使其可以在参数与计算量更少的情况下实现比ResNet更优的性能,图1网络由多个DenseBlock与中间的卷积池化组成,核心就在Dense Block中。Dense Block中的黑点代表一个卷积层,其中的多条黑线代表数据的流动,每一层的输入由前面的所有卷积层的
转载 2024-09-02 22:46:01
56阅读
Unet一、原理:Unet网络分为两个部分: 第一部分:特征提取。上图中的左侧,有点类似VGG网络。由简单的卷积、池化下采样。图中采用的是33和11的卷积核进行卷积操作,33用于提取特征,11用于改变纬度。另外每经过一次池化,就变成另一个尺度,包括input的图像总计5个尺度。 第二部分:上采样及特征融合。上图中的右侧。此处的上采样即通过转置卷积进行。然后进行特征融合,但是此处的特征融合和FCN的
一、Voting模型融合其实也没有想象的那么高大上,从最简单的Voting说起,这也可以说是一种模型融合。假设对于一个二分类问题,有3个基础模型,那么就采取投票制的方法,投票多者确定为最终的分类。二、Averaging对于回归问题,一个简单直接的思路是取平均。稍稍改进的方法是进行加权平均。权值可以用排序的方法确定,举个例子,比如A、B、C三种基本模型,模型效果进行排名,假设排名分别是1,2,3,那
深入探究ConvNets vs. Transformers,哪种预训练模型的可迁移性更好?一文献给还在ConvNets和Transformer之间犹豫的小伙伴们:也许是时候倒向Vision Transformer预训练模型了!Highlights我们通过大量实验发现即使Vision Transformer在ImageNet上的预训练表现略弱于ConvNets,Vision Transformer仍
SwinT模块,让Swin-Transformer 的使用变得和CNN一样方便快捷!项目内容一、SwinT模块的使用演示,接口酷似Conv2D由于以下两点原因,我们将Swin-Transformer最核心的部分制成了一个类似于nn.Conv2D的接口并命名为SwinT。其输入、输出数据形状完全和Conv2D(CNN)一样,这极大的方便了使用Transformer来编写模型代码。1、一方面,虽然随着
【读论文】RFN-Nest: An end-to-end residual fusion network for infrared and visible images介绍关键词简单介绍网络结构RFN 融合网络编码器解码器训练训练自动编码器网络损失函数训练RFN损失函数实验个人总结参考 论文:https://arxiv.org/abs/2103.04286 代码:https://github.c
  • 1
  • 2
  • 3
  • 4
  • 5