1. 概念考虑某个未知的分布 p(x),假定用一个近似的分布 q(x) (1) 这被称为分布p(x)和分布q(x)之间的 相对熵(relative entropy)或者KL ( Kullback-Leibler divergence )。 也就是说,当我们知道真实的概率分布之后,可以给出最有效的编码。如果我们使用了不同于真实分布的概率分布,那么我们一定会损失编
KL与JSKL(Kullback-Leibler divergence)KL的计算公式KL的基本性质JS(Jensen-Shannon divergence)JS的数学公式不同于KL的主要两方面 KL(Kullback-Leibler divergence)又称KL距离,相对熵。KL是描述两个概率分布P和Q之间差异的一种方法。直观地说,可以用来衡量给定任意分布
jskl代码pytorch的描述 在机器学习和深度学习中,Kullback-Leibler(KL和Jensen-Shannon(JS)是两种常用的概率分布相似性度量。它们在信息论、生成模型以及自监督学习中起着重要作用。在使用PyTorch实现这些时,可能会遇到一些参数选择和调试问题。本文将详细记录解决“jskl代码pytorch”相关问题的过程,包括背景定位、参数解
原创 5月前
157阅读
KLKL divergence)全称:Kullback-Leibler Divergence。用途:比较两个概率分布的接近程度。在统计应用中,我们经常需要用一个简单的,近似的概率分布 f * 来描述。观察数据 D 或者另一个复杂的概率分布 f 。这个时候,我们需要一个量来衡量我们选择的近似分布 f * 相比原分布 f&nb
KL、JS和交叉熵三者都是用来衡量两个概率分布之间的差异性的指标1. KLKL又称为相对熵,信息,信息增益。KL是是两个概率分布 PQ (概率分布P(x)和Q(x))  之间差别的非对称性的度量。 KL是用来 度量使用基于 QPPQP 的近似分布定义如下:因为对数函数是凸函数,所以KL的值为非负数。当P(x)和Q(x)的相似
转载 2024-01-19 13:37:03
915阅读
3.2 实验过程与结果3.2.1 面向对象的遥感影像分割利用ENVI软件的Segment Only Feature Extraction功能模块对实验数据进行面向对象分割操作。该方法采用的是Full Lambda-Schedule分割算法, 其基本思想是对影像的光谱和空间结构信息进行分析, 通过对具有相似光谱值和空间结构特征值像素的迭代、聚合, 实现对影像斑块的分割。在该方法中, 需要对分割尺度(
PR Ⅴ & 信息论 Ⅰ:熵、KL、交叉熵、JS及python实现首先以离散分布为主开启这个系列的文章,因此文中的概率符号是离散分布所使用的大写的概率质量函数。1 信息量我们吃瓜的时候经常会感叹信息量很大,这说明肯定是越不寻常的事情信息量越大,如果只是“太阳东起西落”肯定不会引起吃瓜群众的关注。花书中给出了信息量化的准则如下: 那么,一个事件
# KL与交叉熵在PyTorch中的应用 在深度学习模型的训练中,我们常常需要衡量两个分布之间的差异,其中Kullback-Leibler (KL)和交叉熵是最常用的两种指标。本文将深入探讨这两者的定义、区别及其在PyTorch中的实现,并提供相应的代码示例。 ## 1. KL与交叉熵的定义 ### KL KL是一种用于测量两个概率分布之间差异的非对称度量。给定两个概率
KL ,是一个用来衡量两个概率分布的相似性的一个度量指标。我们知道,现实世界里的任何观察都可以看成表示成信息和数据,一般来说,我们无法获取数据的总体,我们只能拿到数据的部分样本,根据数据的部分样本,我们会对数据的整体做一个近似的估计,而数据整体本身有一个真实的分布(我们可能永远无法知道)。那么近似估计的概率分布和数据整体真实的概率分布的相似,或者说差异程度,可以用 KL 来表示。KL
在深度学习模型中,Kullback-Leibler(简称KL)是用来衡量两个概率分布之间的差异的常用方法。PyTorch提供了内置的支持,使得我们可以方便地实现KL损失。这篇文章将全面探讨如何在PyTorch中实现KL损失的过程。 ```mermaid flowchart TD A[开始] --> B{选择模型} B -->|是| C[训练模型] B --
KL的公式是假设真实分布为,我们想用分布去近似,我们很容易想到用最小化KL来求,但由于KL是不对称的,所以并不是真正意义上的距离,那么我们是应该用还是用?下面就来分析这两种情况:正向KL: 被称为正向KL,其形式为: 仔细观察(1)式,是已知的真实分布,要求使上式最小的。考虑当时,这时取任何值都可以,因为这一项对整体的KL没有影响。当时,这一项对整体的KL就会产生影响,
转载 2023-09-15 16:14:39
474阅读
KL
转载 2019-01-16 10:13:00
479阅读
2评论
在概率论或信息论中,KL( Kullback–Leibler divergence),又称相对熵(r
原创 2022-12-01 19:00:48
560阅读
K-L Kullback-Leibler Divergence,即K-L,是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。在概率学和统计学上,我们经常会使用一种更简单的、近似的分布来替代观察数据或太复杂的分布。K-L能帮助我们度量使用一个分布来近似另一个分布时所损失的信息。 K-L定义见文末附录1。另外在附录5中解释了为什么在深度学习中,训练模型时使用的是Cros
转载 2023-07-29 13:30:32
257阅读
写在前面大家最近应该一直都有刷到ChatGPT的相关文章。小喵之前也有做过相关分享,后续也会出文章来介绍ChatGPT背后的算法——RLHF。考虑到RLHF算法的第三步~通过强化学习微调语言模型的目标损失函数中有一项是KL,所以今天就先给大家分享一篇与KL相关的文章。0. KL概述KL(Kullback-Leibler Divergence,KL Divergence)是一种量化两
KL、交叉熵与JS度数学公式以及代码例子1.1 KL 概述 KL ,Kullback-Leibler divergence,(也称相对熵,relative entropy)是概率论和信息论中十分重要的一个概念,是两个概率分布(probability distribution)间差异的非对称性度量。对离散概率分布的 KL 计算公式为:对连续概率分布的 KL 计算公
        KL(Kullback-Leibler divergence)是一种用来衡量两个概率分布之间的差异性的度量方法。它的本质是衡量在用一个分布来近似另一个分布时,引入的信息损失或者说误差。KL的概念来源于概率论和信息论中。KL又被称为:相对熵、互熵、鉴别信息、Kullback熵、Kullback
两者都可以用来衡量两个概率分布之间的差异性。JSKL的一种变体形式。KL:也称相对熵、KL距离。对于两个概率分布P和Q之间的差异性(也可以简单理解成相似性),二者越相似,KL越小。KL的性质:●非负性。即KL大于等于零。●非对称性。即运算时交换P和Q的位置,得到的结果也不一样。(所以这里严格来讲也不能把KL称为KL距离,距离一定符合对称性,所以要描述准确的话还是建议用
转载 2月前
416阅读
KL(Kullback-Leibler divergence),可以以称作相对熵(relative entropy)或信息(information divergence)。KL的理论意义在于度量两个概率分布之间的差异程度,当KL越大的时候,说明两者的差异程度越大;而当KL小的时候,则说明两者的差异程度小。如果两者相同的话,则该KL应该为0。接下来我们举一个具体的?:我们设定
一、第一种理解 相对熵(relative entropy)又称为KL(Kullback–Leibler divergence,简称KLD),信息(information divergence),信息增益(information gain)。 KL是两个概率分布P和Q差别的非对称性...
转载 2015-10-26 16:46:00
619阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5