目录软件下载一、图窗体的编辑和设置工具1.1 图窗体编辑工具1.2  图窗体编辑工具二、数据输入2.1 手动输入数据资料2.2 CSV数据导入导出2.3 随机图生成2.4 动态图数据三、布局四、过滤五、统计网络概述01. 平均度02. 平均加权度03. 网络直径04. 图密度05. 模块06. PageRank07. 连接分量节点概述01. 平均聚类系数02. 特征
cv2.waitKey(0)保持显示窗口,直到用户按下任意键代码:#灰度反转 import cv2 # opencv读取图像 img = cv2.imread('gray.png', 1) #检查图像是否成功加载 if img is not None: cv2.imshow('img', img) # 得到图像的尺寸 img_shape = img.shape #
# Python加权平均值法灰度 ## 引言 在数字图像处理中,灰度是将彩色图像转换为灰度图像的过程。灰度图像只包含灰度级别的信息,而不包含颜色信息。灰度是许多图像处理任务的基础,如边缘检测、图像增强等。其中一种常用的方法是加权平均值法。 本文将介绍加权平均值法的原理和使用Python实现的代码示例,并通过流程图和实例讲解算法的具体步骤和计算过程。 ## 加权平均值法原理 加权平均值法
原创 2023-08-31 05:18:59
996阅读
  问题描述 灰度的原理时假定每个像素点的三通道值相同,并用统一的灰度值待代替。加权平均法读取灰度图像时,是将三个通道的通道值进行加权,然后用来代替灰度。 实际中加权平均法RGB灰度的公式为: 式中表示三个通道的权值,且三者之和为1。 解决方案 首先运用opencv读取图像: import cv2 as cv  src =  cv.imread("D:\pecture\PmZT25j
转载 2021-06-24 10:25:13
3641阅读
NumPy常用函数(2)成交量加权平均价格(VWAP):vwap是经济学上的一个重要量,代表了金融资产的平均价格。某个价格的成交量越高,该价格所占的权重就越大 示例:import numpy as np c,v = np.loadtxt("000875.csv",delimiter=',',usecols=(3,5),unpack=True) vwap = np.average(c,weight
转载 2023-08-11 17:46:28
128阅读
1、窗口计算Pandas 窗口函数,为了处理数字数据,Pandas 提供几种窗口函数,如移动窗口函数(rolling()),扩展窗口函数(expanding()),指数加权滑动(ewm()),同时可在基基础上调用适合的统计函数,如求和、中位数、均值、协方差、方差、相关性等。rolling(10) 与 groupby 很像,但并没有进行分组,而是创建了一个按移动 10(天)位的滑动窗口对象。我们再对
转载 2023-08-19 16:35:21
589阅读
前言python语言中的groupby技术,是一种“拆分-应用-合并”的范式。所谓范式,它具有复用能力,可以应用到不同的符合的应用场景。pandas有两种数据结构,分别是Series和DataFrame。我们可以简单理解Series是一个没有列名的一组值,DataFrame是几个带有列表的列的组合。如果首次接触,可以多想想平时接触到的各种excel和csv等格式的数据文件,然后结合着
一、 加权平均法   概念:加权平均法亦称全月一次加权平均法,是指以当月全部进货数量加上月初存货数量作为权数,去除当月全部进货成本加上月初存货成本,计算出存货的加权平均单位成本,以此为基础计算当月发出存货的成本和期末存货的成本的一种方法。   加权平均法计算公式:   存货的加权平均单位成本=(月初结存货成本+本月购入存货成本)/(月初结存存货数量+本月购入存货数量)   月末库存存货成本=月
目录一、按索引排序二、按值排序三、排序与排名四、基本统计方法 1.基础方法2.分位数 3.平方绝对误差+方差+标准差+累加和 五、处理缺失值六、补全缺失值一、按索引排序这里我们发现我们原来的数据中,我们的年份索引是从大到小排序的,使用了我们的sort_index之后,我们的索引变成了从小到大排序data=pd.read_csv('gdp1.csv',index_col
简介使用Numpy、Pandas、自编三种方法计算:平均值、截尾均值、加权平均值、中位数、众数、中列数、极差、四分位数、方差、标准差实现方法定义三个类(Numpy_funtion、Pandas_funtion、My_funtion),类中编写数据基本统计方法。方法名与功能如下表名称功能输入mean计算均值( 数据列表 )tmean计算截尾均值( 数据列表 )weight_mean计算加权平均数(
# Python 批量灰度实现 ## 概述 在本文中,我将教会你如何使用Python实现批量灰度图片。灰度图像是将彩色图像转化为黑白图像的过程,通过降低图像的色彩维度,使得图像只包含灰度信息。 ## 流程 下面是实现批量灰度的大致流程: | 步骤 | 描述 | | --- | --- | | 1 | 读取输入目录中的所有图片文件 | | 2 | 遍历每个图片文件 | | 3 | 将每
原创 2023-08-02 13:09:11
95阅读
加权平均是一种常用的统计方法,用于计算一组数据的平均值,其中每个数据点都有一个特定的权重。在Python中实现加权平均可以通过以下步骤完成: **流程概述** 首先,我们将整个流程分为三个主要步骤:输入数据、计算加权平均、输出结果。下面是详细的步骤表格: ```mermaid journey title 加权平均 Python实现流程 section 输入数据 sec
原创 2024-01-21 05:34:10
55阅读
1、概述  加权移动平均法,是对观察值分别给予不同的权数,按不同权数求得移动平均值,并以最后的移动平均值为基础,确定预测值的方法。采用加权移动平均法,是因为观察期的近期观察值对预测值有较大影响,它更能反映近期变化的趋势。  指数移动加权平均法,是指各数值的加权系数随时间呈指数式递减,越靠近当前时刻的数值加权系数就越大。  指数移动加权平均较传统的平均法来说,一是不需要保存过去所有的数值;二是计算量
转载 2023-07-06 15:39:55
171阅读
对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。pandas提供了一个灵活高效的gruopby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。关系型数据库和SQL(Structured Query Language,结构查询语言)能够如此流行的原因之一就是其能够方便地
# Python加权平均 ## 1. 简介 Python加权平均指的是对一组数据进行加权平均值的计算方法。加权平均是一种考虑了不同数据的权重因素的计算方式,该权重因素用于指示某个数据对平均值的贡献程度。 ## 2. 流程 下面是实现Python加权平均的步骤: | 步骤 | 代码 | 描述 | | ---- | ---- | ---- | | 1. 初始变量 | ```total =
原创 2023-07-18 15:45:17
1142阅读
对这个工具,你一定很熟悉吧,Photoshop里有,很多简单的图像处理软件里面也会有 那这个工具到底是什么意思呢,它和我们要讲到的灰度变换有很大的关系 在图像处理中,像图像度变换和直方图均衡都属于点运算范畴。处理时作用域是单个像素
转载 2023-05-18 09:37:37
134阅读
1. 指数加权平均       指数加权平均是深度学习众多优化算法的理论基础,包括Momentum、RMSprop、Adam等,在介绍这些优化算法前,有必要对指数加权平均(exponentially weighted averages)做一个简单的介绍,以期对后续的优化算法的原理有所知晓。    &
平时跑模型只知道直接上Adam Optimizer,但具体原理却不甚理解,于是把吴恩达老师的深度学习课翻出来看,记录一下关于动量优化算法的基础-EMA相关内容。指数加权平均的概念平时我们计算平均值,就是简单地将所有数据加起来之后与数据总数求商。对于一部分数据来说,这样的平均值以及可以反应数据的趋势,例如某单位的平均年龄,身高等。 但是对于某些数据来说,就不能简单取这样的平均值来观察数据特征了,吴恩
发明线性加权移动平均线的算法,就是为了区分每一天的收盘价的重要性,也就是要给我们需要计算的每一天的收盘价加上一个权重,离我们越近的一天的收盘价权重越大,离我们越远的一天的收盘价权重越小。拿计算10天的移动平均线来做例子,我们找出需要计算的某一品种的全部收盘价格。将第1天的收盘价乘以1,将第2天的收盘价乘以2,将第3天的收盘价乘以3,依此类推,第10天的收盘价乘以10,然后将其相加,即((C1x1+
random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。random.seed(x)改变随机数生成器的种子seed。一般不必特别去设定seed,Python会自动选择seed。random.random()    用于生成一个随机浮点数n,0 <= n < 1random.uniform(a,b)    用于
  • 1
  • 2
  • 3
  • 4
  • 5