Java集框架可以使程序处理对象的方法标准化,集接口是构造集框架的基础,使用迭代方法访问集可以使对集的操作更高效。认识集框架在基础应用中,通常我们可以通过数组来保存一组具有相同属性的对象或者基本类型的数据,但使用数组的弊端在于其大小是不可更改的,因此出于灵活性的考虑,可以使用链表来实现动态的数组。任何事情都有两面性,灵活性的代价就是操作上的繁琐。在计算机世界里,处理繁琐问题的常用方法
转载 2024-05-29 01:31:56
27阅读
      考虑到学习知识的顺序及效率问题,所以后续的几种方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作用,而重点是放在如何使用及使用的场景。     (题外话: 今天看到一篇博文:刚接触机器学习这一个月我都做了什么?&nb
转载 2023-08-24 13:07:37
413阅读
# PySpark实现的步骤 在PySpark中实现可以使用MLlib库中的KMeans算法。下面是整个过程的步骤: | 步骤 | 描述 | | ---- | ---- | | 1 | 导入必要的库 | | 2 | 加载数据集 | | 3 | 特征提取和转换 | | 4 | 训练模型 | | 5 | 预测 | | 6 | 评估模型 | ## 1. 导入必要的库 ```pytho
原创 2024-05-24 06:07:20
284阅读
R语言K划分1、 随机生成3个簇点> c1=cbind(rnorm(20,2,1),rnorm(20,2,1))> c2=cbind(rnorm(20,3,2),rnorm(20,15,3))> c3=cbind(rnorm(20,20,2),rnorm(20,20,3))> v=rbind(c1,c2,c3)在图中看看这三个簇的分布> plot(v) 如图,&n
转载 2014-05-09 22:50:00
140阅读
安装从这里下载相关的安装文本1. 安装fortran     yum install libgfortran     yum install gcc-gfortran2. 安装blas     rpm -ivh blas-3.2.1-5.el6.x86_64.rpm     rp
Python进行KMeans是比较简单的,首先需要import numpy,从sklearn.cluster中import KMeans模块: import numpy as np from sklearn.cluster import KMeans 然后读取txt文件,获取相应的数据并转换成numpy array: X = [] f = open('rktj4.txt') for v
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据的结果和k的
一、分类二、k-means2.1、基本算法2.2、 算法流程2.3、算法分析2.4、结束条件2.5、散度2.6、时间和空间复杂度2.7、常见问题2.8、SAE和SAE三、层次3.1、分类3.2、计算步骤3.3、lance-williams3.4、层次问题四、密度(DBSCAN)4.2、解释4.2、算法步骤4.3、DBSCAN优缺点4.4、变密度的簇4.5、簇评估分类4.5.1、图
转载 2023-06-21 22:09:52
173阅读
什么是图像分割图像分割:利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相识性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。图像分割常用方法:阈值分割:对图像灰度值进行度量,设置不同类别的阈值,达到分割的目的。边缘分割:对图像边缘进行检测,即检测图像中灰度值发生跳变的地方,则为一片区域的边缘
# 使用 PySpark 进行聚类分析 是一种常见的数据分析技术,旨在将数据点分组,使得同一组内部的数据点相似度较高,而不同组之间的数据点相似度较低。在这篇文章中,我们将使用 PySpark 的 MLlib 库对一些用户数据进行聚类分析,以便将用户根据其购买行为进行分组。 ## 问题背景 假设我们有一个电子商务平台,记录了用户的购买行为数据,包括用户ID、商品类别、购买时间和购买金额等信
原创 7月前
52阅读
需求拿到的需求是输入n个文本,对文本进行,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。kmeans谈到就会想到kmeans,它的核心思想是给定的K值和K个初始质心将样本中每个点都分到距离最近的簇中,当所有点分配完后根据每个簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数
之前一直用R,现在开始学python之后就来尝试用Python来实现Kmeans。之前用R来实现kmeans的博客:笔记︱多种常见模型以及分群质量评估(注意事项、使用技巧)聚类分析在客户细分中极为重要。有三比较常见的模型,K-mean、层次(系统)、最大期望EM算法。在模型建立过程中,一个比较关键的问题是如何评价结果如何,会用一些指标来评价。.一、scikit-lea
什么是聚类分析是一个将数据集划分为若干组(class)或(cluster)的过程,并使得同一个组内的数据对象具有较高的相似度,而不同组中的数据对象是不相似的。与分类的区别: 是一 种无监督的学习方法。与分类不同,它不依赖于事先确定的数据类别和标有数据类别的学习训练样本集合。 是观察式学习,而不是示例式学习。聚类分析的典型应用 在商务上,能帮助市场分析人员从客户基本库中发现不同
      Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力。而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法。Python具有Spark的API。需要注意的是,Spark中,所有数据的处理都是基于RDD的。首先举一个方面的详细应用例子Kmeans:   下面代码是一些基本步骤,包括外部数据,RDD预处理,训练模型,预测。#c
转载 2023-07-17 16:37:22
130阅读
算法思想是针对给定的样本,依据它们特征的相似度或距离,将其归并到若干个或簇的数据分析问题。类属于无监督学习,因为只是根据样本的相似度或距离将其进行归并,而或簇实现不知道。算法有很多,这里主要介绍K均值(K-means)。的分类通过得到的簇或,本质是样本的子集。如果一个方法假定一个样本只能属于一个,那么该方法称为硬,如果一个样本可以属于多个,那么该方法称为软
转载 2023-08-19 21:58:25
177阅读
就是将一个对象的集合(样本集合)分割成几个不想交的子集(每个子集所代表的语义需要使用者自己进行解释),每个内的对象之间是相似的,但与其他的对象是不相似的. 分割的的数目可以是指定的(例如k-means),也可以是有算法生成的(DBSCAN).是无监督学习的一个有用工具。1原型:原型是指结构能够通过一组原型刻画,即样本空间中具有代表性的点。也就是说是通过具有代
转载 2024-05-14 22:08:38
43阅读
文章目录一、模糊聚类分析二、案例背景1、问题描述2、模糊C--均值算法(FCM)三、MATLAB程序实现1、初始化2、更新中心、目标函数值、隶属度矩阵3、程序源码4、结果分析四、参考文献 一、模糊聚类分析模糊是目前知识发现以及模式识别等诸多领域中的重要研究分支之一。随着研究范围的拓展,不管是科学研究还是实际应用,都对的结果从多方面提出了更高的要求。模糊C–均值(FCM)是目前
OTU定义OTU(Operational Taxonomic Units),即操作分类单元。通过一定的距离度量方法计算两两不同序列之间的距离度量或相似性,继而设置特定的分类阈值,获得同一阈值下的距离矩阵,进行操作,形成不同的分类单元。在16S测序中,将序列按照97%的相似性进行OTU。 OTU的意义高通量测序得到的序列有几千万条,对每条序列都进行物种注释的话,工作量大、耗时,
转载 2023-10-11 16:39:24
449阅读
重点介绍下K-means算法。K-means算法是比较经典的算法,算法的基本思想是选取K个点(随机)作为中心进行,然后对的结果计算该类的质心,通过迭代的方法不断更新质心,直到质心不变或稍微移动为止,则最后的结果就是最后的结果。下面首先介绍下K-means具体的算法步骤。K-means算法在前面已经大概的介绍了下K-means,下面就介绍下具体的算法描述:1)选取K个点作为初
转载 2023-09-06 19:58:30
112阅读
在GMM中使用EM算法我们使用k个多元高斯分布的混合高斯分布GMM来对数据进行,其中每一个分布代表一个数据簇。首先,随机选择k个对象代表各个簇的均值(中心),猜测每一个簇的协方差矩阵,并假定初始状态 时每个簇的概率相等; 然后,根据多元高斯密度函数求出每一个对象属于每一个簇的概率,并求出数据的似然函数值;最后,根据每一个数据点属于每一个簇的概率,来更新每一个簇的均值,协方差矩阵,
转载 2023-08-02 23:25:26
149阅读
  • 1
  • 2
  • 3
  • 4
  • 5