分箱算法简介先来讲讲什么是分箱算法,根据字面意思就是把数据按照不同的规则分到不同的箱子里。其实分箱是特征工程的一种,可以理解为一种连续数据变为离散数据的建模方式。 举个直观的例子,比如有一组连续数据,比如为25,14,68,43,63。假设数据的分箱逻辑是大于50为0,小于50为1,那么最终数据会变成1,1,0,1,0,数据就离散化了。当然分箱有很多方式,大致作用就是把连续数据按照一定的
本节主要讨论K均值聚类和围绕中心点的划分PAM聚类。  K均值聚类:K均值聚类分析。从概念上讲, K均值算法如下:选择K个中心点(随机选择K行);把每个数据点分配到离它最近的中心点;重新计算每类中的点到该类中心点距离的平均值(也就说,得到长度为p的均值向量,这里的p是变量的个数);分配每个数据到它最近的中心点;重复步骤(3)和步骤(4)直到所有的观测值不再被分配或是达到最大的迭代次数(R把10次作
实现代码 import numpy as np import pandas as pd from collections import Counter def chimerge(data, attr, label, max_intervals): distinct_vals = sorted(set
原创 2021-08-05 17:49:37
310阅读
在建模中,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。有监督的卡方分箱法(ChiMerge)自底向上的(即基于合并的)数据离散化方法。 它依赖于卡方检验:具有最小卡方值的相邻区间合并在一起,直到满足确定的停止准则。 基本思想:对于精确的离散化,相对类频率在一个区间内应当完全一致。因此,如果两个相邻的区间具有非常类似的类分布,则这两个区间可以合并;否则,它们应当保持分
1,箱形图的基本概念箱形图(盒形图、盒须图)的理解箱形图三种中Q1 Q2 Q3的计算方式三种:数据未分组按照从下到大的顺序计算。1)index正好是整数,直接计算 ;2)index是浮点数时,按照靠近的index左右权重比计算;3)向上累计和向下累计计算。2,分箱操作分箱操作是一种数据预处理的方法。目的:将连续变量离散化。无监督分箱:(1)等距离(等宽度)分箱:将变量的取值范围分为k个等宽的区间。
1 特征选择1. 1 概述特征选择是一种剔除与标注不相关或冗余的特征的方法,以减少特征集的维度和复杂性,并提高模型的性能和解释能力。特征选择的目标是选择那些对目标变量有预测能力且与其他特征不冗余的特征。特征选择的方法可以分为三类:(1)过滤式(Filter)特征选择:通过对特征进行评估,计算特征与目标变量之间的相关性或其他统计指标,然后根据设定的阈值选择特征。常见的方法包括相关系数、卡方检验、互信
# 使用卡方分箱进行数据分箱的Python实现 在数据分析和机器学习中,特征工程是至关重要的一步。卡方分箱(Chi-square Binning)是一种用于将数值型特征离散化的方法,可以帮助我们更好地理解数据并提高模型的预测能力。在这篇文章中,我将向你介绍如何利用Python进行卡方分箱的实现。我们将从整件事情的流程开始,逐步深入理解每一个步骤,并附上必要的代码和注释。 ## 流程概述 以下
原创 10月前
162阅读
   在机械学习中,我们经常会对数据进行分箱处理的操作, 也就是 把一段连续的值切分成若干段,每一段的值看成一个分类。这个把连续值转换成离散值的过程,我们叫做分箱处理。 比如,把年龄按15岁划分成一组,0-15岁叫做少年,16-30岁叫做青年,31-45岁叫做壮年。在这个过程中,我们把连续的年龄分成了三个类别,"少年","青年"和"壮年"就是各个类别的名称,或者叫做标签。 cu
转载 2023-10-18 17:40:35
149阅读
一、概述因为基本数据类型的变量身上没有任何的方法和属性,所以针对基本数据类型提供了对应的类形式--包装类。  利用这个类产生对象,调用对象身上的方法来操作这个数据。二、分类  包装类分为以下几种:基本数据类型byteshortlongfloatdoublechar booleanint 包装类ByteShortLongFloatDoubleCharacter
卡方分箱卡方分箱原理数据分析与数据挖掘之四大分布三大检验python自带分箱函数  --  无法实现对分类型数据的分箱,可借助卡方分箱算法实现import numpy as np import pandas as pd data = np.random.randint(100, size=(10000,)) #自定义分箱 #cut(x, bins, right=True,
转载 2023-06-12 20:46:17
423阅读
背景介绍本文针对有一定基础的数据分析人员,专门想了解卡方分箱原理和寻找能直接运行的代码的人员。分箱是特征工程中常见的操作,也就是将某一个变量划分为多个区间,比如对年龄分箱,1-10岁,10-40岁,40+岁。卡方分箱就是用来寻找最优分割点的方法。本文介绍了卡方分箱原理、python代码、使用数据集(有数据集构造代码)测试分箱效果几个部分。 注:这里保证代码肯定可以直接运行,并附上了检验分箱原理的代
最近上传了一个变量分箱的方法到pypi,这个包主要有以下说明:缺失值单独一箱,不论缺失的数量多少;生成的分箱woe值是单调的,后续有时间会迭代U型分箱的版本;会有分箱最小样本数占比,类似决策树的最小叶节点占比;分箱成功的变量才会保留,有可能失败的情况是找不出同时满足上述2和3的分箱;增加了多进程,提升分箱速度除了Iv以外,增加变量切分的其他算法:alg_method = ‘iv’ , ‘gini’
个人观点,信贷行业中,模型稳定性往往比模型效果更重要。信贷行业所做的任何规则、政策、模型的调整,都需要较长时间才能知道结果如何,模型迭代周期相较于其他行业可能更长,因此一个模型的稳定性至关重要。当然在模型迭代周期较短的场景下,可以去追求更好的模型效果,比如有些反欺诈场景,模型模型迭代快,模型可以快速及时调整。但对于大多数其他情况,无论是做评分卡还是机器学习,个人在实践中会为了稳定性牺牲掉一些效果。
1. 卡方分箱-一种有监督分箱1.1 卡方检验卡方检验是对分类数据的频数进行分析的统计方法;用于分析分类变量和分类变量的关系(相关程度);卡方检验分为优度检验和独立性检验。1.1.1 拟合优度检验拟合优度检验是对一个分类变量的检验,即根据总体的分布情况,计算出分类变量中各分类的期望频数,与分布的观测频数进行对比,判断期望频数与观察频数是否有显著差异。1.1.2 列联分析:独立性分析独立性检验对两个
分箱操作就是将连续数据转换为分类对应物的过程。⽐如将连续的身⾼数据划分为:矮中⾼。分箱操作分为等距分箱和等频分箱分箱操作也叫⾯元划分或者离散化。import numpy as np import pandas as pd df = pd.DataFrame(data = np.random.randint(0,150,size = (100,3)), columns=['Python','T
1、聚合统计1.1描述统计#df.describe(),对数据的总体特征进行描述 df.groupby('team').describe()df.groupby('team').describe().T #列数太多,进行转置1.2统计函数#对分组对象直接使用统计函数,分组内数据进行计算,返回df形式的数据 #计算平均数 df.groupby('team').mean()#相关性系数
转载 2023-12-19 16:38:37
100阅读
one-hot 编码会将原始变量中的每个状态都做为作为一个新的特征,当原始特征状态较多时,数据经过one-hot编码之后特征数量会成倍的增加,同时新特征也会变得过于稀疏。在进行变量筛选的过程中,也会出现原始特征的一部分状态被筛选出来,另一部分状态未被筛选出来,造成特征的不完整。而WOE编码不仅可以解决以上这些问题,同时还可以将特征转化为线性。在建模中,需要对连续变量离散化,特征离散化后,模型会更稳
目录等距分箱与等频分箱LightGBM分箱算法实现代码GreedyFindBinFindBinWithZeroAsOneBinGetBinsGetCodes 等距分箱与等频分箱在深度学习中,通常需要对连续特征进行离散化处理,这样可以使用嵌入向量表示特征。离散化处理的方法,常见的有等距分箱和等频分箱。等距分箱的缺点是,数据容易集中在某个区间内,导致编号基本相同,丢失大量信息。并且等距分箱通常需要一
前些日子,星球里讨论风控建模面试中的一些问题,其中就提到了 “卡方分箱”。大家对卡方分箱都有或多或少的疑问,应星球朋友要求,最近整理了一下我对卡方分箱的理解,也借此分享给公众号的朋友们。什么是分箱?说到分箱,可能很多朋友都非常熟悉,它是数据科学中常用到的一个技巧,意思就是将连续型的数据分成几个数据段,即离散化。很好理解,举个例子,比如将原本连续的年龄特征离散化,结果可变为0-18,18-30, 3
实现 Hive 分箱的流程如下: 1. 数据准备:首先,你需要准备一份包含数值型数据的 Hive 表,作为示例数据集。可以使用以下代码创建一个名为 `input_data` 的表,并插入一些示例数据。 ```sql -- 创建表 CREATE TABLE input_data ( id INT, value DOUBLE ); -- 插入示例数据 INSERT INTO input_
原创 2024-01-16 09:34:44
109阅读
  • 1
  • 2
  • 3
  • 4
  • 5