导读从事机器学习相关岗位的同学都知道这样一句话:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。在数据确定的情况下,那么特征工程就成了唯一可供发挥的关键步骤。广义来讲,特征工程包括特征提取、特征衍生以及特征选择等等,今天本文就来分享Python中的一个特征工程相关的库——featuretools,可自动化快速实现特征提取和特征衍生的工作,对加速机器学习建模和保证特征工程效果都非常有帮
问题:什么是马尔科夫模型?用来干什么?大家可以参考这篇简书python 实现关于HMM有两个主要问题:已知上述三个参数,和当前观测序列,求解隐藏状态的变化所有参数未知,只有数据,如何获得三个参数需要使用hmmlearn 包导入需要的库import random import datetime # 可有可无,用来记录模型学习时间, import numpy as np from hmmlearn i
文章参照# coding=utf-8 import re import numpy as np class Hmm(object): def __init__(self, train_path): self.train_path = train_path self.clean_data() def clean_data(self):
转载 2023-06-21 10:36:06
43阅读
引言最近再参加网页设计大赛,任务量都在网页设计和网页修改,以至于落了好多天学习大数据的知识。今天比赛结束,正好写一篇网页大赛用到的技术正文我们做的是一个豆瓣top250数据分析的一个网页,其中有一项技术是用到了词云,今天正好把这项技术说说。具体怎么做的呢,首先我们先爬取了豆瓣top250 220条关于某个电影的短评,然后将短评存到数据库,读取数据库,将关于该部电影的短评组成一句话,进行jieba分
转载 2023-08-08 16:10:59
79阅读
Python Examples1、打印出100以内的斐波那契数列,使用2种方法实现2、使用 Python 实现随机生成 200 无重复激活码(或者优惠券),字符串长度大于5以上3、九九乘法表-14、九九乘法表-25、九九乘法表-36、九九乘法表-47、九九乘法表-58、九九乘法表-69、九九乘法表-1(上三角)10、九九乘法表-2(上三角)11、九九乘法表-3(上三角)12、打印菱形13、打印如
# 使用Python实现HMM模型:从入门到实践 隐马尔可夫模型(HMM)是一种用于分析时间序列数据的概率模型。作为新手开发者,你可能会对如何在Python中实现HMM感到困惑。本文将详细展示如何使用Python的`hmmlearn`包实现HMM,并提供一系列清晰的步骤和代码示例。 ## 整体流程 下面是使用Python进行HMM建模的整体流程: | 步骤编号 | 步骤名称
原创 2024-08-31 09:22:02
108阅读
本文记录利用STM32的USB设备以HID方式实现与PC的自定义包大小通信的上下位机开发过程. 关键字: USB, HID, HID读写,Report Descriptor 要解决的问题 : 假定某一串行通信协议, 命令的最大长度为64个字节, 而现在改用USB- HID方式来通信, 通信协议不变, 我们如何实现? 芯片: STM32F103ZE; 基础代码: 官方USB固件库V3.2.0;
基于Java+SVM+ID3的基于工业大数据的故障诊断模型设计与实现(毕业论文+程序源码)大家好,今天给大家介绍基于Java+SVM+ID3的基于工业大数据的故障诊断模型设计与实现文章目录: 基于Java+SVM+ID3的基于工业大数据的故障诊断模型设计与实现(毕业论文+程序源码)1、项目简介2、资源详情3、关键词4、毕设简介5、资源下载6、更多JAVA毕业设计项目 1、项目简介在工业设备的运行过
  了解了HMM之后,我们可以发现HMM有两个很明显的缺点:HMM定义的是联合概率,必须列举出所有可能出现的情况,这在很多领域是很困难的。在NLP领域,常知道各种各样但又不完全确定的信息,需要一个统一的模型将这些信息综合起来。HMM遵循一个假设:输出独立性假设。这要求序列数据严格相互独立才能保证推导的正确性,导致不能考虑上下文特征。而在NLP领域,上下文信息是很重要的。   因此,引入条件随机场(
# 隐马尔可夫模型(HMM)的Python实现 隐马尔可夫模型(Hidden Markov Model, HMM)是一种统计模型,用于描述一个系统在某一隐含状态下的变化过程。HMM在语音识别、自然语言处理、生物信息学等多个领域都有广泛应用。本文将介绍HMM的基本概念、原理,并通过Python实现一个简单的示例,同时配以甘特图和旅行图,以便更好地理解HMM的工作原理。 ## HMM的基本概念
原创 9月前
36阅读
以下是关于隐马尔科夫HMM(Hidden Markov Model)在Python中的实现过程的全面记录。我将详细介绍环境预检、部署架构、安装过程、依赖管理、安全加固和扩展部署,确保每个部分都符合逻辑。 ### 隐马尔科夫HMM Python代码描述 隐马尔科夫模型(HMM)是一种统计模型,广泛应用于时间序列分析、语音识别、自然语言处理等领域。它可以通过观察状态序列来推断隐藏状态,从而对数据进
原创 6月前
36阅读
机器学习python入门之特征工程Baseline model加载数据Load the data准备目标列Prepare the target column转换时间戳Convert timestampsPrep categorical variablesCreate training, validation, and test splitsTrain a modelMake prediction
转载 2023-08-10 18:12:38
221阅读
利用Python进行常见的特征工程上期说到数据分析师一般对业务数据提取的时候就会进行数据清洗,也会做一些业务逻辑或者数据逻辑上的特征处理。但由于特征工程是数据建模重要的一环,所以这里就做一个简单的总结。希望能给大家带来一些小小地帮助~首先给到一个特征工程概览图(如下):单特征操作数据变换离散变量-哑编码import pandas as pd # 构造数据 df = pd.DataFrame({'
文章目录1、数据集1.1 可用数据集1.2 scikit-learn数据集sklearn小数据集sklearn大数据集1.3 数据集的划分数据集划分API2.特征工程2.1特征工程包含内容3.特征提取3.1字典特征提取3.2 文本特征提取3.3中文文本特征提取3.4 Tf-idf文本特征提取公式4.特征预处理4.1 归一化4.2 标准化5. 特征降维5.1 特征选择5.1.1 低方差特征过滤5.
OX00 引言数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。特征做不好,调参调到老。重视调参,少走弯路!特征工程又包含了Data PreProcessing(数据预处理)、Feature Extraction(特征提取)、Feature Selection(特征选择)和Feat
特征筛选特征筛选的方法基于统计值的特征筛选利用方差利用相关性利用线性模型迭代消除排列重要性(Permutation Importance)基于模型的特征筛选 特征筛选就是在已有的特征中,筛选出最具有代表的一部分特征来进行接下来的学习 通常,我们通过加入特征,模型的精度的变化来判断该特征的重要性 特征筛选的方法基于统计值的特征筛选利用方差方差主要计算特征的统计量(离散程度),结果可能与最终结果有
转载 2024-01-20 00:02:37
189阅读
机器学习越来越多地从手动设计模型转变为使用H20,TPOT和auto-sklearn等工具来自动优化的渠道。这些库以及随机搜索等方法旨在通过查找数据集的最优模型来简化模型选择和转变机器学习的部分,几乎不需要人工干预。然而,特征工程几乎完全是人工,这无疑是机器学习管道中更有价值的方面。特征工程也称为特征创建,是从现有数据构建新特征以训练机器学习模型的过程。这个步骤可能比实际应用的模型更重要,因为机器
一.什么是特征选择(Feature Selection )   特征选择也叫特征子集选择 ( FSS , Feature Subset Selection ) 。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化。  需要区分特征选择与特征提取。特征提取 ( Feature extraction )是指利用已有的特征计算出一个抽象程度更高的特征集,也指计算得到某
转载 2023-11-23 17:05:52
235阅读
特征选择是机器学习中非常重要的一部分,它可以帮助我们从海量的特征中选择出最重要的特征,从而提高模型的准确性和效率。在本文中,我们将介绍如何使用Python进行特征选择,并提供相应的代码示例。 在开始之前,我们先来了解一下特征选择的定义和作用。特征选择是指从所有可用特征中选择一个最佳特征子集的过程。它的目的是减少特征空间的维度,提高模型的训练效果和预测能力。特征选择可以帮助我们去除冗余的特征,提高
原创 2023-08-29 08:01:59
131阅读
特征选择就是从原始特征中选取一些最有效的特征来降低维度,,提高模型泛化能力减低过拟合的过程,主要目的是剔除掉无关特征和冗余特征,选出最优特征子集; 常见的特征选择方法可以分为3类:过滤式(filter)、包裹式(wrapper)、嵌入式(embedding)。1.过滤式filter: 通过方差选择法、相关系数法、卡方检验法、互信息法来对特征进行评分,设定阈值或者待选择的阈值的个数来选择; 1.1方
  • 1
  • 2
  • 3
  • 4
  • 5