1.ODS层(1)HDFS用户行为数据(2)HDFS业务数据 (3)针对HDFS上的用户行为数据和业务数据,我们如何规划处理?(1)保持数据原貌不做任何修改,起到备份数据的作用。(2)数据采用压缩,减少磁盘存储空间(例如:原始数据100G,可以压缩到10G左右)(3)创建分区表,防止后续的全表扫描2.DWD层DWD层需构建维度模型,一般采用星型模型,呈现的状态一般为星座模型。维度建模一般
# Hadoop与EDW的区别 在大数据和数据仓库的快速发展中,Hadoop与EDW(企业数据仓库)各自扮演着不同的角色。虽然二者都是用于数据存储和分析的工具,但它们的架构、技术栈与应用场景存在显著差异。在本文中,我们将探讨Hadoop与EDW的区别,并提供相应的代码示例以帮助理解。此外,我们还将通过类图和流程图来进一步说明二者的不同。 ## 一、Hadoop概述 H
原创 9月前
51阅读
四:搭建-ODS层首先,先了解一下ODS层的任务即其功能:1)保持数据原貌不做任何修改,起到备份数据的作用。2)数据采用LZO压缩,减少磁盘存储空间。100G数据可以压缩到10G以内。3)创建分区表,防止后续的全表扫描,在企业开发中大量使用分区表。4)创建外部表。在企业开发中,除了自己用的临时表,创建内部表外,绝大多数场景都是创建外部表。4.1 ODS层(用户行为数据)4.1.1&n
在现代大数据处理中,(数据仓库)和Hadoop成为了不可或缺的元素。用于有结构化的数据分析,而Hadoop则以其分布式计算能力处理大规模数据集。本篇文章将从环境配置、编译过程、参数调优、定制开发、部署方案、进阶指南六个方面详细记录如何解决Hadoop的集成问题。 ## 环境配置 为确保Hadoop的高效运行,首先需要搭建合适的环境。以下是我的配置步骤: 1. 确保服务器具
原创 6月前
18阅读
一、引言Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统
转载 2024-09-23 17:22:10
31阅读
# 构建 Hadoop 关系流程 ## 1. 概述 在构建 Hadoop 关系之前,需要确保已经搭建好了 Hadoop 环境并准备好了要存储的数据。是用于存储和分析大数据的系统,而 Hadoop 则是其中重要的基础设施之一。本文将介绍构建 Hadoop 关系的流程,并指导你如何实现每一步。 ## 2. 流程步骤 | 步骤 | 描述 | | ---- | ---- | | 1
原创 2024-06-22 03:37:36
23阅读
超越数据仓库数据仓库的架构当前数据仓库的主流架构:分为两个方向一个是 hadoop 体系,一个是 MPP 数据库1、hadoop + hiveHive是建立在Hadoop HDFS基础之上的数据仓库基础框架,数据是保存在HDFS上的,它可以将结构化的数据文件映射为一张表,并提供类 SQL 查询功能。它将SQL语句转化成 MapReduce 的 Job,然后在 Hadoop上执行,把执行的结果最终反
中台系统把业务层同性的算法能力,服务能力,业务能力高度集成,有效组织 ,动态规划。更好的帮助上层业务。 今天就让我们看看关于数据中台的问答吧。 1 Q : 什么是数据中台?A : 数据中台是指通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。这些服务跟企业的业务有较强的关联性
转载 2024-01-27 12:21:07
36阅读
3.5 Hadoop与数据仓库 传统数据仓库一般建立在Oracle、MySQL这样的关系数据库系统之上。关系数据库主要的问题是不好扩展,或者说扩展的成本非常高,因此面对当前4Vs的大数据问题时显得能力不足,而这时就显示出Hadoop的威力。Hadoop生态圈最大的吸引力是它有能力处理非常大的数据量。在大多数情况下,Hadoop生态圈的工具能够比关系数据库处理更多的数据,因为数据和计算都是分布式的。
转载 2024-04-16 11:24:56
50阅读
在谈之前,先来看下面几个问题:为什么要分层?用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理
一、数据模型数据模型就是数据组织和存储方法,它强调从业务、数据存取和使用角度合理存储数据。Linux的创始人Torvalds有一段关于“什么才是优秀程序员”的话:“烂程序员关心的是代码,好程序员关心的是数据结构和它们之间的关系”。只有数据模型将数据有序的组织和存储起来之后,数据才能得到高性能、低成本、高效率、高质量的使用。关于的建模有两种基本的模型:1、关系建模(Inmon)关系建模是数据仓库
概述分层模型设计ODS层设计DWD层设计DIM层设计DWS层设计ADS层设计 概述    上一篇主要阐述了 OneData 建模体系中的规范定义部分,而本篇主要阐述的是分层模型设计部分。当了解到每一个业务过程与维度的关联,就可以基本明确需要设计事实表与维度表;再通过明确统计指标的深入分析,就可以下沉某些相同计算逻辑。这是的基本架构雏形已明确,而接下来则是设计各个表如何设计。例如:什么样的表放
数据仓库架构分层1. 数据仓库架构数据仓库标准上可以分为四层:ODS(临时存储层)、PDW(数据仓库层)、DM(数据集市层)、APP(应用层)。1)ODS层:为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。一般来说ODS层的数据和源系统的数据是同构的,主要目的是简化后续数据加工处理的工作。从数据粒度上来说ODS层的数据粒度是最细的。ODS层的表通常包括两类,一个用于存储当前需要加
转载 2024-06-11 01:32:09
92阅读
1. RDD的概念,就是说它会把一个比较大的数据集,然后分成很多个不同的部分,这叫分区。它就是如果有的计算节点
原创 2022-09-02 21:30:00
139阅读
中我们主要实践了使用Eclispe开发工具安装hadoop的开发插件,并且使用hadoop插件连接Hadoop远程集群。本文我们要在上文搭建的hadoop开发环境的基础上开发Hadoop的MapReduce项目。 一、环境准备1.hadoop集群2.安装了hadoop插件的Eclipse 二、创建MapReduce项目创建MapReduce项目可以通过eclispe的MapRedu
一、什么是 (Data Warehouse)是指一个面向主题、集成、时点一致的数据集合,用于支持企业决策。它是一个经过整合、清洗和转换的数据集合,可以方便地进行数据分析、报表和决策支持等工作。 二、的特点 1. 面向主题 是以业务主题为中心的,而不是以应用系统为中心的。这意味着数包含的数据是以业务为主线的,而不是以应用为主线的,使得数据更加
原创 2023-07-20 22:12:24
268阅读
数据仓库的项目的概况1. 项目适用于哪些行业? 线上的互联网行业,例如淘宝,安居客等等2. 我准备选择一个什么样的业务公司来写这个项目? 我准备选择一个线上的互联网公司根据公司所产生的埋点日志数据和业务数据做项目3. 项目中主要开发哪些模块?分别有什么用途? 数据仓库 用户画像 个性推荐 :数据存储运算, 用户画像:根据埋点数据给用户贴标签 个性推荐:根据用户画像,精准的给用户进行精准投放
转载 2024-01-08 22:29:38
95阅读
数据仓库更多代表的是一种对数据的管理和使用的方式,它是一整套包括了etl、调度、建模在内的完整的理论体系。现在所谓的大数据更多的是一种数据量级的增大和工具的上的更新。 两者并无冲突,相反,而是一种更好的结合。ODS全称是Operational Data Store,操作数据存储;这一层面的数据却不等同于原始数据。在源数据装入这一层时,要进行诸如去噪(例如去掉明显偏离正常水平的银行刷卡信息)、去重(
转载 2023-11-27 16:47:10
109阅读
概念定义数据仓库是一个面向主题的、集成的、随时间变化的、但信息本身相对稳定的数据集合,用于对管理决策过程的支持。(看不懂接着往后看)和数据库        数据库:二维表以及表中全部字段。表与表之间存在关系(可以是多维关系),所以常见的数据库都是用来做业务数据库。而业务数据库中的数据结构是为了完成业务而设计的,数据流和业务流高度重合 -- 清晰的存储
转载 2023-10-15 15:53:13
128阅读
规划建议1、将平台账号收归统一管理,防止出现同一张业务表被重复同步到平台或者自己的业务流程被别人误运行。(有些业务流程是不能被重复运行的) 2、对数平台的表命名进行统一规范。针对ods、dw、ads 层级最好加上对应前缀,方便区分层级和分析。针对ods层,因为这个是拉取业务系统的表,我们业务系统非常多和复杂,所以我们是会加上库名_t_表名。 3、对目前的存在的表进行排查,同一张业务表
  • 1
  • 2
  • 3
  • 4
  • 5