国内首个基于Windows操作系统的GPU高性能计算集群研制成功   一个普通的实验室里,在一台普通的台式机上发出一条集群工作的指令,通过一个小小的交换机,三台计算机同时进行演算,一个蒙特卡洛的计算问题在3秒钟内就完成了,比单独由一台机器完成的速度提高了60倍以上。这个简单例子的演示让笔者直观地了解了“基于Windows操作系统的GPU高性能计算集群”。 &nb
转载 2024-05-02 19:51:56
65阅读
1、为什么要装CUDA,CUDNN:先来讲讲CPU和GPU的关系和差别吧。截图来自(CUDA的官方文档): 从上图可以看出GPU(图像处理器,Graphics Processing Unit)和CPU(中央处理器,Central Processing Unit)在设计上的主要差异在于GPU有更多的运算单元(如图中绿色的ALU),而Control和Cache单元不如CPU多,这是因为GPU在进行并行
转载 2024-04-16 17:23:18
236阅读
1.CUDA对应的NVIDIA驱动版本对照表,参考一下表格2.显卡驱动安装,参考这里我这里选择安装的显卡驱动是NVIDIA-Linux-x86_64-410.78.run,安装是否成功,可以输入这个命令nvidia-smi,如果有显示GPU信息,那就是安装成功了。3.cuda安装装cuda首先需要降级:sudo add-apt-repository ppa:ubuntu-toolchain-r/t
转载 2024-07-22 12:41:25
2205阅读
GPU架构SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的。以Fermi架构为例,其包含以下主要组成部分:CUDA coresShared Memory/L1CacheRegister FileLoad/Store UnitsSpecial Function UnitsWarp SchedulerGPU中每个SM都设计成支持
转载 2024-07-19 15:17:14
169阅读
GPU 的硬件基本概念Nvidia的版本:  实际上在 nVidia 的 GPU 里,最基本的处理单元是所谓的 SP(Streaming Processor),而一颗 nVidia 的 GPU 里,会有非常多的 SP 可以同时做计算;而数个 SP 会在附加一些其他单元,一起组成一个 SM(Streaming Multiprocessor)。几个 SM 则会在组成所谓的 TPC(Texture Pr
转载 2024-07-03 21:41:57
76阅读
一、典型GPU程序构成一个典型GPU程序有如下几个部分:①CPU在GPU上分配内存②CPU将CPU中的数据copy到GPU中③调用内核函数来处理数据④CPU将GPU中的数据copy到CPU中 *可以看出,四个步骤中有两个是数据的copy,因此如果你的程序需要不断地进行copy,那么运行效率会比较低,不适合利用GPU运算。一般情况下,最好的方式是,让GPU进行大量运算,同时保证计算量与通信
转载 2023-09-08 18:30:55
181阅读
cuda,cudnn,安装和tensorflow的gpu调配忙了两周终于安装完了cuda 和 cudnn ,并且成功调用tensorflow的GPU使用!!!1;首先 找自己电脑的适配cuda2;cuda,cudnn,tensorflow版本适配表3;决定适合自己的版本后,开始下载!4;cuda安装:5;安装cudnn6;添加环境变量7;检测环境变量是否添加成功8;在tensorflow中配置G
转载 2024-03-16 08:45:54
184阅读
零教程的基本概述在深度学习蓬勃发展的今天,模型变得越来越深,参数愈加庞大,虽然准确率不断增长,由于硬件受限,对实际场景部署的要求也越来越高,CUDA 编程成为了一门必备的武林绝学。如果你对模型的推理速度有较高要求,如果你有庞大的数据流等待推理,一起跟着教程了解这门技术。该教程目前暂定有以下章节,如有添加将会另行说明:  通过这些教程,可以说初入了 CUDA 编程的世界,基本学会
目录一、前言二、安装CUDA、cuDNN和PyTorchCUDA的安装cuDNN的安装三、验证是否安装成功一、前言在进行深度学习模型训练时,可以使用CPU训练,但通常比较慢,也可以采用GPU进行加速训练,从而缩短训练时间。目前支持深度学习的显卡只有NIVDIA,AMD是不支持的,因此AMD显卡的用户不用再纠结于CUDA的安装了,直接安装CPU版本的PyTorch就好了。要使用GPU进行加速训练,要
多首先,先来了解一下GPU与CPU的区别,如图 可以看到CPU(Central Processing Unit,中央处理单元),由Control(控制台),ALU(Arithmetic Logic Unit,逻辑计算单元),Cache(高速缓存),而GPU(Graphic Processing Unit,图形处理单元)也是由相同的部件组成,但GPU的计算单元远比CPU多,这就决定了GPU适合大量
 Win10+RTX3060机器学习环境配置1、下载准备  2、下载安装CUDA和CUDNN      2.1 cuda和cudnn下载      2.2 cuda和cudnn安装  3、安装GPU版pytorch与TensorFlow      3.1 下载   &n
转载 2024-05-14 10:51:47
1770阅读
CUDA的全称是Computer Unified Device Architecture(计算机统一设备架构)。CUDA不只是一种编程语言,它包括NVIDIA对于GPGPU的完整的解决方案:从支持通用计算并行架构的GPU,到实现计算所需要的硬件驱动程序、编程接口、程序库、编译器、调试器等。NVIDIA提供了一种较为简便的方式编写GPGPU代码:CUDA C。我们将一个cuda程序分为两部分:主机端
1 定位bug出现bug的第一想法自然是定位bug。cuda比较奇特的地方在于,有时报错bug在500行,但500行出的代码没有错误,而是在1000行的地方逻辑错了,十分头疼。 下面介绍三种我总结的定位bug方法:1.1 二分法一半一半的注释代码,定位bug。比较笨拙和麻烦,但是十分好用。1.2 输出定位法将整体代码分为几个模块,正常的CUDA代码大概可以分为数据初始化,内存申请,内存拷贝,核函
真·手把手教你配置ubuntu20.04中cuda+cudnn禁用自带显卡驱动安装显卡开始安装cuda安装cudnn多个版本的cuda 禁用自带显卡驱动1.首先更新Ubuntu必备环境源sudo apt-get update sudo apt-get upgrade sudo apt-get install build-essential2.执行下列代码打开ubuntu环境变量sudo gedi
转载 2024-07-18 21:56:18
53阅读
前言:安装这个东西,折腾了大半天,查阅了很多资料。但最终还是安装成功了,并记录下来。希望给大家一些借鉴,顺利完成安装。整个安装过程需要很强的版本控制。显卡驱动==>CUDA<==>cuDAA<==>tensorflow_gpu==>keras 1、我安装的版本为(自测可用):python:3.6.6tensorflow_gpu:2.1.0CUDA:10.1cuD
转载 2024-03-29 15:13:18
97阅读
CUDA C只是C语言的扩展,多了一些包,只要安装好CUDA工具箱(编译GPU代码的编译器)就可以在VS等IDE下就能编译和运行。下载GPU驱动程序 www.nvidia.com/cuda(可能你的机器已经装好)下载CUDA工具箱 http://developer.nvidia.com/object/gpucomputing.html还可以下载GPU Computing SDK代码集,也是一个很好
“The number of transistors on an integrated circuit doubles every two years.” – Gordon E. Moore著名的摩尔定律。下面是摩尔定律的可视化分析图: 串行性能的扩展已经结束:不能继续再扩展处理器 (没有10GHz的芯片)不能继续再增加能源的消耗(不能把芯片融化)能够继续增加晶体管的
本节主要讲述在模型训练时利用gpu对训练进行加速首先我们需要知道gpu不是我们想调用就可以直接调用的,我们需要安装一个cuda工具包以及其对应的cudnn(cuDNN 是用于配置深度学习使用),当我们安装好这两个时才能利用机器学习来进行训练,其次我们的gpu驱动要足够新,他会对版本更低的cuda工具包进行兼容,但更高的不行(不需要降级gpu驱动),最后便是最复杂的问题:版本对应,可以去官网,我使用
# 如何实现“GPU Docker CUDA” ## 一、流程概述 首先,让我们通过以下表格来展示整个实现“GPU Docker CUDA”的流程: | 步骤 | 描述 | | ---- | ---- | | 1 | 安装Docker | | 2 | 安装NVIDIA Docker | | 3 | 创建一个包含CUDA的Docker镜像 | | 4 | 运行CUDA容器 | | 5 | 测试
原创 2024-04-20 07:35:30
52阅读
nvenc_sdk 解码器的代码分析 SDK 中的 sample 文件夹下的 NvTranscoder 中包含了编码器和解码器的用法,编码器的内容不在这里分析,因为 FFMPEG 中已经包含了相关的代码,不需要其他的处理。 解码器在 SDK 中有一份封装,主要是 NvTranscoder 下的 VideoDecoder 类。目前这个类的具体用法还不是特别的清楚。分析将会从 main 函数开始。 m
  • 1
  • 2
  • 3
  • 4
  • 5