FLOPS     -  FLoating-point OPerations per SecondGFLOPS  - One bilion ()FLOPS 十亿TFLOPS   -  1,000GFLOPS            一万亿 T->P-&gt
转载 2月前
393阅读
实现相机传感器驱动器使得能够通过传感器提供的原始格式通过CSI总线获取相机数据。 根据相机和应用程序的不同,有两种类型的相机编程路径。• Camera Core Library Interface • Direct V4L2 InterfaceCamera Core User Mode Library Interface相机核心用户模式库提供应用程序和内核模式V4L2驱动程序之间的所有控件和数据处
最近研究GPU架构,关于GPU的基本原理(顶点->纹理->像素->光栅  这个pipeline)可以参考我之前阅读的一些文章,相信读了他们,会对什么是GPUGPU的工作原理等之类的问题有了一定的感性认识,具体如下:     1 GPU大百科全书系列   http://vga.zol.com.cn/251/2511984.html
转载 2023-10-06 23:08:57
251阅读
GPU 编程可以称为异构编程,最近由于机器学习的火热,很多模型越来越依赖于GPU来进行加速运算,所以异构计算的位置越来越重要;异构编程,主要是指CPU+GPU或者CPU+其他设备(FPGA等)协同计算。当前的计算模型中,CPU主要用来进行通用计算,其更多的是注重控制,我们可以通过GPU和FPGA等做专用的计算。CPU负责逻辑性强的事物处理和串行计算,GPU则专注于执行高度线程化的并行处理任务(大规
转载 2023-07-07 22:57:20
150阅读
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。   于是CPU和GPU就呈现出非常不同的架构(示意图): id="iframe_0.
转载 2023-11-28 13:28:23
10阅读
1、GPU的起源GPU缩写为Graphics Processing Unit的,一般称为视觉处理单元。GPU被广泛用于嵌入式系统、移动电话、个人电脑、工作站和电子游戏解决方案当中。现代的GPU对图像和图形处理是十分高效率的,这是因为GPU被设计为很高的并行架构这样使得比通用处理器CPU在大的数据块并行处理算法上更具有优势。1985年 8月20日 ATi公司成立,同年10月ATi使用ASIC技术开发
转载 2023-10-01 15:26:17
182阅读
一篇文章理解CUDA架构、编程与进阶使用一、CUDA架构二、CUDA编程基础1.矩阵加法2.矩阵乘法三、CUDA进阶 I——利用共享内存加速访存1.CUDA内存读写速度比较2.申请共享内存四、CUDA进阶 II——利用stream加速大批量文件IO读写耗时1. 认识CUDA stream2. CUDA stream API介绍五、CUDA进阶 III——调用cuBLAS库API进行矩阵计算 本文
转载 2023-10-07 18:04:39
205阅读
目前市场上的NVIDIA显卡都是基于Tesla架构的,分为G80、G92、GT200三个系列。Tesla体系架构是一块具有可扩展处器数量的处理器阵列。每个GT200 GPU包含240个流处理器(streaming processor,SP),每8个流处理器又组成了一个流多处理器(streaming multiprocessor,SM),因此共有30个流多处理器。GPU在工作时,工作负载由PCI-E
转载 2023-07-13 20:43:19
371阅读
一、CPU与GPU对比CPU是一个有多种功能的优秀领导者。它的优点在于调度、管理、协调能力强,计算能力则位于其次。而GPU相当于一个接受CPU调度的“拥有大量计算能力”的员工。下图是处理器内部结构图:DRAM即动态随机存取存储器,是常见的系统内存。Cache存储器:电脑中作高速缓冲存储器,是位于CPU和主存储器DRAM之间,规模较小,但速度很高的存储器。算术逻辑单元ALU是能实现多组算术运算和逻辑
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。于是CPU和GPU就呈现出非常不同的架构(示意图):GPU采用了数量众多的计算单元和超长
转载 2023-07-19 17:26:33
235阅读
GPU架构及CUDA基础理解cuda core,sm,sp显存显存(Global Memory):显存是在GPU板卡上的DRAM,类似于CPU的内存,就是那堆DDR啊,GDDR5啊之类的。特点是容量大(可达16GB),速度慢,CPU和GPU都可以访问。计算单元计算单元(Streaming Multiprocessor):执行计算的。每一个SM都有自己的控制单元(Control Unit),寄存器(
转载 2023-08-24 22:07:21
520阅读
内容包括: 1.OpenCLspec和多核硬件的对应关系 AMD GPU架构 Nvdia GPU架构 Cell Broadband Engine 2.一些关于OpenCL的特殊主题 OpenCL编译系统 Installable client driver 首先我们可能有疑问,既然OpenCL具有平台无关性,我们为什么还
转载 精选 2012-09-07 22:13:44
1562阅读
参考资料:NVIDIA CUDA Programming Guide, NVIDIA. (https://docs.nvidia.com/cuda/cuda-c-programming-guide/)国科大《并行与分布式计算》课程、NVIDIA 在线实验平台 文章目录GPU & CUDAG80 Graphics ModeG80 CUDA ModeCUDA Programming Mode
基本概念:GPU: Graphic Processing Unit;图形处理单元;GPGPU: General Purpose computations on GPU;通用计算图形处理单元;CPU与GPU的相同点:(1)都是计算机体系结构中的重要组成部分;(2)都是超大规模集成电路元件;(3)都能够完成浮点运能功能;
转载 2023-09-19 00:23:21
401阅读
文章目录关于GPU架构简介GPC, TPC, SM, CUDA Core流多处理器 SM 的架构线程组的分派SM和线程组线程组的数量选择线程组的分派和线程数量规划线程组的执行单位:warp 关于本文从GPU架构去理解Computer Shader的线程组概念,分析了线程组和线程的数量如何规划,以及Dispatch函数和numthreads的参数的含义。(目前还是初步的理解,有可能存在错误,此文会
转载 2023-07-12 00:17:09
192阅读
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。    于是CPU和GPU就呈现出非常不同的架构(示意图):&nbs
一、硬件平台xavier配置:     Xavier是最新一代NVIDIA业界领先的嵌入式Linux高性能计算机,主要包括一个8核NVIDIA Carmel ARMv8.2 64位CPU,由8个流多处理器组成的512核Volta架构GPU,支持并行计算语言CUDA 10,支持多精度计算,FP16计算能力为11 TFLOPS(每秒浮点运算次数),INT8为2
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼RV870核心控制引擎R870的图形架构可以拆分为以下几个模块,一个一个来看都有什么改进:Command Processor(指令处理器)Graphics Engine(图形装配引擎)Ultra-Threaded Dispatch Processor(超线程分配处理器)Stream Processing Units(流处理器)Texture U
CPU与GPU的计算模块差别 以上为CPU架构GPU架构的主要区别: 图一可见:CPU在ALU的计算一个步骤之外还有许多额外的开销。 图二展示了CPU,AVX(高级矢量扩展指令集),以及GPU的计算模块。可以看出GPU在ALU的数量上具有相当大的优势,因此在计算密集度高的场景上有可以有相对高的计算能力。 以上为完整的GPU结构。 图三中的每一个绿色小块都是一个SM,而每个SM的详细结构如图四。C
转载 2023-08-15 14:23:00
114阅读
一、NVIDIA介绍NVIDIA,中文名英伟达,是一家人工智能计算公司,与ATI(后被AMD收购)齐名,专注于打造能够增强个人和专业计算平台的人机交互体验的产品(一家显卡厂商),是全球可编程图形处理技术领袖,发明了GPU,重新定义了现代计算机图形技术,并彻底改变了并行计算。其中 NVIDIA 组织的 NVIDIA GPU 技术大会 (GTC) 是AI和深度学习领域的大会,也是全球范围的GPU开发者
转载 2023-07-14 19:12:18
81阅读
  • 1
  • 2
  • 3
  • 4
  • 5