1. 解释一下GBDT算法的过程GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想。1.1 Boosting 思想Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得
转载
2024-10-12 11:55:06
19阅读
利用GBDT模型构造新特征具体方法数据挖掘入门与实战 实际问题中,可直接用于机器学**模型的特征往往并不多。能否从“混乱”的原始log中挖掘到有用的特征,将会决定机器学**模型效果的好坏。引用下面一句流行的话: 特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已。 本文中我将介绍Facebook最近发表的利用GBDT模型构造新特征的方
转载
2024-09-02 13:15:16
27阅读
GBDT(Gradient Boosting Decision Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。 GBDT主要由三个概念组成:Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage (算法的一
转载
2024-03-12 22:00:16
55阅读
用GBDT构建组合特征一、理论Facebook在2014年发表“Practical Lessons from Predicting Clicks on Ads at Facebook”,论文中提出经典的GBDT+LR的模型结构,开启特征工程模型化、自动化的新阶段。文章提出采用GBDT自动进行特征筛选和组合,进而生成新的特征向量,再把该特征向量作为LR模型的输入,预测CTR,模型结构如下图所示。其中
转载
2024-04-29 19:55:09
158阅读
一般来说,GB方法适用于异质化数据。即,若你的数据集全由图片数据构成或者全由视频数据构成之类的,我们称其为同质化数据,这时使用神经网络往往会有更好的表现。但对于异质化数据,比如说数据集中有user gender,user age,也有content data等等的情况,GB方法的表现往往更好。GB方法比神经网络的入门门槛更低,使用起来也更简单。NN和GB方法可以结合起来使用,并常常有很好的表现。我
转载
2024-10-17 13:17:29
29阅读
GBDT+LR的提出源自于高特征交叉带来的组合爆炸问题。推荐系统中的FM及FFM都是在基本特征的基础之上进一步构造新的特征(特征与特征之间的交叉)。2014年,Facebook提出了基于GBDT+LR组合模型的解决方法。GBDT+LR的使用场景GBDT+LR主要运用在CTR点击率预估,即去计算用户点击推送广告的概率。那么为什么要采用这种组合方式呢?因为点击率预估涉及到的样本一般是上亿级别的,样本量
转载
2024-07-27 11:17:37
31阅读
特征工程系列:GBDT特征构造以及聚类特征构造关于作者:JunLiang,一个热爱挖掘的数据从业者,勤学好问、动手达人,期待与大家一起交流探讨机器学习相关内容~0x00 前言数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。那特征工程是什么?特征工程是利用数据领域的相关知识来创建能
转载
2023-07-17 21:53:41
80阅读
通过实践以下内容,使用GBDT生成新的特性,与原特性合并后,进行模型预测,AUC的分数不一定比原数据要高,所以通过测试后选择是否使用此方法。实际问题中,可直接用于机器学习模型的特征往往并不多。能否从“混乱”的原始log中挖掘到有用的特征,将会决定机器学习模型效果的好坏。引用下面一句流行的话: 特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已。 本文中我将介绍Facebook
转载
2024-03-26 17:37:30
62阅读
1.简介gbdt全称梯度下降树,在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,gbdt在各种竞赛是大放异彩。原因大概有几个,一是效果确实挺不错。二是即可以用于分类也可以用于回归。三是可以筛选特征。这三点实在是太吸引人了,导致在面试的时候大家也非常喜欢问这个算法。 gbdt的面试考核点,大致有下面几个:gbdt 的算法的流程?gbdt 如何
作者:1直在路上1因为用树模型太习以为常了,以至于看到这个标题很容易觉得这很显然。但越简单的东西越容易出现知识盲区,仔细想一下好像确实有点疑问:GBDT 用的是回归树,是如何做的分类呢?- 作者:1直在路上1- 一 简介GBDT 在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,GBDT 在各种竞赛是大放异彩。原因大概有几个效果确实挺不错;既
转载
2024-05-21 22:38:16
25阅读
这三篇关于GBDT的算法介绍,是我在网上找到的最优秀的。转载过来纯属学习留档,日后复习。
,作者
kingsam_
摘要:GBDT-分类 GBDT-回归 前面两篇文章已经详细介绍了在回归和分类下的GBDT算法。这一篇文章将最后介绍一个多分类任务的GBDT。其过程和二分类的GBDT类似,但是有一个地方有很大的不同,下文将详细的介绍。正文:下图是Friedman在论文中对G
转载
2024-04-02 07:02:03
53阅读
提到GBDT分类相信大家应该都不会觉得陌生,本文就GBDT分类的基本原理进行讲解,并手把手、肩并肩地带您实现这一算法。完整实现代码请参考本人的github:https://github.com/tushushu/imylu/blob/master/imylu/ensemble/gbdt_base.py
https://github.com/tushushu/imylu/blob/master/im
转载
2024-05-27 20:15:41
44阅读
GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。举个年龄预测问
转载
2024-03-04 20:00:28
53阅读
实际问题中,可直接用于机器学习模型的特征往往并不多。能否从“混乱”的原始log中挖掘到有用的特征,将会决定机器学习模型效果的好坏。引用下面一句流行的话: 特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已。 本文中我将介绍Facebook最近发表的利用GBDT模型构造新特征的方法1。 论文的思想很简单,就是先用已有特征训练GBDT模型,然后利用GBDT模型学习到的树来构造新
转载
2024-03-29 12:33:54
40阅读
关于GBDT的算法原理和实例讲解可见:GBDT算法原理以及实例讲解GBDT总结下面是涉及到的GBDT的面试问答:基本原理通过多轮迭代,每轮迭代产生一个弱分类器(利用CART回归树构建),每个分类器在上一轮分类器的残差基础上进行训练。最后将这些弱分类器线性组合成一个强学习器。GBDT如何做特征选择?遍历样本的特征,对于每个特征,遍历样本的切分点,选择最优的特征的最优切分点;判断最优时使用平方误差。使
转载
2024-05-05 18:50:06
563阅读
是新朋友吗?记得先点蓝字关注我哦~作者介绍知乎@王多鱼京东的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。一、GBDT算法原理Gradient Boosting Decision Tree(GBDT)是梯度提升决策树。GBDT模型所输出的结果是由其包含的若干棵决策树累加而成,每一棵决策树都是对之前决策树组合预测残差的拟合,是对之前模型结果的一种“修正”。梯度提升树既
转载
2023-10-04 20:58:19
204阅读
(封面图由ERNIE-ViLG AI 作画大模型生成) 探究GBDT算法:从Boosting到特征工程GBDT是机器学习领域中非常有用的算法之一。它可以用于分类和回归问题,并且在实践中表现非常出色。GBDT算法源自于提升算法(Boosting),但是它的实现方式以及性能相比于其他提升算法更好,可以处理高维数据,同时也具有很好的泛化性能。本文将介绍GBDT算法的发展历程和原理,以及通过实际案例来
转载
2024-04-25 10:51:09
200阅读
1.背景LR属于线性模型,容易并行化,可以轻松处理上亿条数据,但是学习能力十分有限,需要大量的特征工程来增加模型的学习能力。但大量的特征工程耗时耗力同时并不一定会带来效果提升。因此,如何自动发现有效的特征、特征组合,弥补人工经验不足,缩短LR特征实验周期,是亟需解决的问题。一般通过笛卡尔积进行两两相乘再进行降维得到特征组合,但事先不知道哪两个特征之间有关联,当特征几万个或者更多时,该方法很难实现。
转载
2023-11-02 08:06:25
66阅读
一 简介GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差来不断提高最终分类器的精度。GBDT主要由三个概念组成:Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage&
转载
2024-05-29 20:26:58
45阅读
Gradient boosting decision tree(使用的基分类器是CART回归树,不适用CART分类树)介绍:首先gbdt 是通过采用加法模型(即基函数的线性组合),以及不断减小训练过程产生的残差来达到将数据分类或者回归的算法。GBDT训练过程gbdt通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高
转载
2024-03-06 23:04:14
46阅读